Lucas BorrÃ;s

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1624829/publications.pdf

Version: 2024-02-01

75 papers	3,326 citations	201575 27 h-index	55 g-index
75 all docs	75 docs citations	75 times ranked	2062 citing authors

#	Article	IF	Citations
1	Physical and chemical kernel traits affect starch digestibility and glycemic index of cooked maize flours. Food Chemistry, 2022, 369, 130953.	4.2	6
2	Crop attributes explaining current grain yield dominance of maize over sorghum. Field Crops Research, 2022, 275, 108346.	2.3	5
3	Development of a decision-making application for optimum soybean and maize fertilization strategies in Mato Grosso. Computers and Electronics in Agriculture, 2022, 193, 106659.	3.7	6
4	Radiation use efficiency increased over a century of maize (<i>Zea mays</i> L.) breeding in the US corn belt. Journal of Experimental Botany, 2022, 73, 5503-5513.	2.4	21
5	Maize nitrogen management in soils with influencing water tables within optimum depth. Crop Science, 2021, 61, 1386-1399.	0.8	7
6	Genotype and cytokinin effects on soybean yield and biological nitrogen fixation across soil temperatures. Annals of Applied Biology, 2021, 178, 341-354.	1.3	8
7	Environment quality, sowing date, and genotype determine soybean yields in the Argentinean Gran Chaco. European Journal of Agronomy, 2021, 123, 126217.	1.9	13
8	Sowing date, genotype choice, and water environment control soybean yields in central Argentina. Crop Science, 2021, 61, 715-728.	0.8	19
9	Carotenoid profiles in maize genotypes with contrasting kernel hardness. Journal of Cereal Science, 2021, 99, 103206.	1.8	20
10	Lateâ€season N fertilization effects on soybean seed protein and biological N ₂ fixation. Agronomy Journal, 2021, 113, 5076-5086.	0.9	5
11	Differential Maize Yield Hybrid Responses to Stand Density Are Correlated to Their Response to Radiation Reductions Around Flowering. Frontiers in Plant Science, 2021, 12, 771739.	1.7	1
12	Maize kernel color depends on the interaction between hardness and carotenoid concentration. Journal of Cereal Science, 2020, 91, 102901.	1.8	16
13	Physiological processes associated with soybean genetic progress in Argentina. , 2020, 3, e20041.		8
14	Aphid Resistance: An Overlooked Ecological Dimension of Nonstructural Carbohydrates in Cereals. Frontiers in Plant Science, 2020, 11, 937.	1.7	13
15	Maize long-term genetic progress explains current dominance over sorghum in Argentina. European Journal of Agronomy, 2020, 119, 126122.	1.9	8
16	Management options for reducing maize yield gaps in contrasting sowing dates. Field Crops Research, 2020, 251, 107779.	2.3	15
17	Role of yield genetic progress on the biochemical determinants of maize kernel hardness. Journal of Cereal Science, 2019, 87, 301-310.	1.8	9
18	Management and environmental factors explaining soybean seed protein variability in central Argentina. Field Crops Research, 2019, 240, 34-43.	2.3	17

#	Article	IF	CITATIONS
19	Improving Grain Quality in Oil and Cereal Crops. , 2019, , 269-285.		6
20	Exploring soybean management options for environments with contrasting water availability. Journal of Agronomy and Crop Science, 2019, 205, 274-282.	1.7	14
21	Maize reproductive development and kernel set under limited plant growth environments. Journal of Experimental Botany, 2018, 69, 3235-3243.	2.4	77
22	Sowing date and maize grain quality for dry milling. European Journal of Agronomy, 2018, 92, 1-8.	1.9	32
23	Fungicide Applications and Grain Dry Milling Quality in Lateâ€Sown Maize. Crop Science, 2018, 58, 892-899.	0.8	4
24	Spatial and temporal plant-to-plant variability effects on soybean yield. European Journal of Agronomy, 2018, 98, 14-24.	1.9	36
25	Dry milling grain quality changes in Argentinean maize genotypes released from 1965 to 2016. Field Crops Research, 2018, 226, 74-82.	2.3	17
26	Siteâ€Specific Covariates Affecting Yield Response to Nitrogen of Lateâ€Sown Maize in Central Argentina. Agronomy Journal, 2018, 110, 1544-1553.	0.9	15
27	Improving Grain Quality in Oil and Cereal Crops. , 2018, , 1-17.		1
28	Relative importance of biological nitrogen fixation and mineral uptake in high yielding soybean cultivars. Plant and Soil, 2017, 418, 191-203.	1.8	44
29	Maize Kernel Hardness, Endosperm Zein Profiles, and Ethanol Production. Bioenergy Research, 2017, 10, 760-771.	2.2	13
30	Physiological Processes Leading to Similar Yield in Contrasting Soybean Maturity Groups. Agronomy Journal, 2017, 109, 158-167.	0.9	24
31	Maize Stand Density Yield Response of Parental Inbred Lines and Derived Hybrids. Crop Science, 2017, 57, 32-39.	0.8	12
32	Variation in Seed Protein Concentration and Seed Size Affects Soybean Crop Growth and Development. Crop Science, 2016, 56, 3196-3208.	0.8	15
33	Crop Management Options for Maximizing Maize Kernel Hardness. Agronomy Journal, 2016, 108, 1561-1570.	0.9	33
34	Exploring genotype, management, and environmental variables influencing grain yield of late-sown maize in central Argentina. Agricultural Systems, 2016, 146, 11-19.	3.2	43
35	Genotype and Nitrogen Effects over Maize Kernel Hardness and Endosperm Zein Profiles. Crop Science, 2016, 56, 1225-1233.	0.8	20
36	Quantitative Trait Loci of Plant Attributes Related to Sorghum Grain Number Determination. Crop Science, 2016, 56, 3046-3054.	0.8	7

#	Article	IF	CITATIONS
37	Reduced soybean photosynthetic nitrogen use efficiency associated with evolutionary genetic bottlenecks. Functional Plant Biology, 2016, 43, 862.	1.1	7
38	Predicting maize kernel number using QTL information. Field Crops Research, 2015, 172, 119-131.	2.3	20
39	Physiological differences in yield related traits between flint and dent Argentinean commercial maize genotypes. European Journal of Agronomy, 2015, 68, 50-56.	1.9	19
40	Facets of the maximum crop yield problem. Field Crops Research, 2015, 182, 1-2.	2.3	1
41	Crop phenotyping for physiological breeding in grain crops: A case study for maize. , 2015, , 375-396.		3
42	Seed Water Concentration and Accumulation of Protein and Oil in Soybean Seeds. Crop Science, 2014, 54, 2752-2759.	0.8	12
43	Soybean Nitrogen Uptake and Utilization in Argentina and United States Cultivars. Crop Science, 2014, 54, 1153-1165.	0.8	38
44	Genotypic Differences among Argentinean Maize Hybrids in Yield Response to Stand Density. Agronomy Journal, 2014, 106, 2316-2324.	0.9	37
45	The Genetic Architecture of Maize (<i>Zea mays</i> L.) Kernel Weight Determination. G3: Genes, Genomes, Genetics, 2014, 4, 1611-1621.	0.8	34
46	Independent genetic control of maize (Zea mays L.) kernel weight determination and its phenotypic plasticity. Journal of Experimental Botany, 2014, 65, 4479-4487.	2.4	29
47	Dissecting the genetic basis of physiological processes determining maize kernel weight using the IBM (B73×Mo17) Syn4 population. Field Crops Research, 2013, 145, 33-43.	2.3	28
48	Correlations Between Parental Inbred Lines and Derived Hybrid Performance for Grain Filling Traits in Maize. Crop Science, 2013, 53, 1636-1645.	0.8	17
49	Adding genotypic differences in reproductive partitioning and grain set efficiency for estimating sorghum grain number. Crop and Pasture Science, 2013, 64, 9.	0.7	4
50	Physiological strategies for seed number determination in soybean: Biomass accumulation, partitioning and seed set efficiency. Field Crops Research, 2012, 135, 58-66.	2.3	35
51	Genotypic diversity in sorghum inbred lines for grain-filling patterns and other related agronomic traits. Crop and Pasture Science, 2011, 62, 1026.	0.7	13
52	Linking assimilate supply and seed developmental processes that determine soybean seed composition. European Journal of Agronomy, 2011, 35, 184-191.	1.9	19
53	Kernel number and kernel weight determination in dent and popcorn maize. Field Crops Research, 2011, 120, 360-369.	2.3	34
54	Counting Maize Kernels through Digital Image Analysis. Crop Science, 2011, 51, 2796-2800.	0.8	15

#	Article	IF	CITATIONS
55	Resource distribution and the tradeâ€off between seed number and seed weight: a comparison across crop species. Annals of Applied Biology, 2010, 156, 91-102.	1.3	118
56	Trait dissection of maize kernel weight: Towards integrating hierarchical scales using a plant growth approach. Field Crops Research, 2010, 118, 1-12.	2.3	107
57	Characterization of Grainâ€Filling Patterns in Diverse Maize Germplasm. Crop Science, 2009, 49, 999-1009.	0.8	74
58	Relationship between assimilate supply per seed during seed filling and soybean seed composition. Field Crops Research, 2009, 112, 90-96.	2.3	66
59	Modeling Anthesis to Silking in Maize Using a Plant Biomass Framework. Crop Science, 2009, 49, 937-948.	0.8	26
60	Agronomy and plant breeding are key to combating food crisis. Nature, 2008, 453, 1177-1177.	13.7	14
61	Kernel weight dependence upon plant growth at different grain-filling stages in maize and sorghum. Australian Journal of Agricultural Research, 2008, 59, 280.	1.5	63
62	Enhanced kernel set promoted by synchronous pollination determines a tradeoff between kernel number and kernel weight in temperate maize hybrids. Field Crops Research, 2008, 105, 172-181.	2.3	28
63	Plasticity of sorghum kernel weight to increased assimilate availability. Field Crops Research, 2007, 100, 272-284.	2.3	37
64	Kernel water relations and duration of grain filling in maize temperate hybrids. Field Crops Research, 2007, 101, 1-9.	2.3	103
65	Coupling time to silking with plant growth rate in maize. Field Crops Research, 2007, 102, 73-85.	2.3	81
66	Predicting maize kernel sink capacity early in development. Field Crops Research, 2006, 95, 223-233.	2.3	126
67	Source–sink relations and kernel weight differences in maize temperate hybrids. Field Crops Research, 2006, 95, 316-326.	2.3	138
68	Sorghum Kernel Weight. Crop Science, 2005, 45, 553-561.	0.8	36
69	Seed dry weight response to source–sink manipulations in wheat, maize and soybean: a quantitative reappraisal. Field Crops Research, 2004, 86, 131-146.	2.3	667
70	Control of Kernel Weight and Kernel Water Relations by Post-flowering Source-sink Ratio in Maize. Annals of Botany, 2003, 91, 857-867.	1.4	143
71	Leaf senescence in maize hybrids: plant population, row spacing and kernel set effects. Field Crops Research, 2003, 82, 13-26.	2.3	175
72	Maize Kernel Composition and Postâ€Flowering Sourceâ€Sink Ratio. Crop Science, 2002, 42, 781-790.	0.8	59

Lucas BorrÃis

#	Article	IF	CITATIONS
73	Maize Kernel Composition and Post-Flowering Source-Sink Ratio. Crop Science, 2002, 42, 781.	0.8	33
74	Maize Kernel Weight Response to Postflowering Source–Sink Ratio. Crop Science, 2001, 41, 1816-1822.	0.8	159
75	Synchronous Pollination within and between Ears Improves Kernel Set in Maize. Crop Science, 2000, 40, 1056-1061.	0.8	98