Miguel A Rosales

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1624246/publications.pdf Version: 2024-02-01

MICHEL A ROSALES

#	Article	IF	CITATIONS
1	Chloride nutrition improves drought resistance by enhancing water deficit avoidance and tolerance mechanisms. Journal of Experimental Botany, 2021, 72, 5246-5261.	4.8	12
2	Chloride Improves Nitrate Utilization and NUE in Plants. Frontiers in Plant Science, 2020, 11, 442.	3.6	31
3	Chloride as a Beneficial Macronutrient in Higher Plants: New Roles and Regulation. International Journal of Molecular Sciences, 2019, 20, 4686.	4.1	84
4	Chloride as macronutrient increases water use efficiency by anatomicallyâ€driven reduced stomatal conductance and increased mesophyll diffusion to CO 2. Plant Journal, 2019, 99, 815-831.	5.7	53
5	Abscisic Acid Coordinates Dose-Dependent Developmental and Hydraulic Responses of Roots to Water Deficit. Plant Physiology, 2019, 180, 2198-2211.	4.8	54
6	Coping With Water Shortage: An Update on the Role of K+, Cl-, and Water Membrane Transport Mechanisms on Drought Resistance. Frontiers in Plant Science, 2019, 10, 1619.	3.6	31
7	Silent S-Type Anion Channel Subunit SLAH1 Gates SLAH3 Open for Chloride Root-to-Shoot Translocation. Current Biology, 2016, 26, 2213-2220.	3.9	104
8	Chloride regulates leaf cell size and water relations in tobacco plants. Journal of Experimental Botany, 2016, 67, 873-891.	4.8	125
9	Group 6 Late Embryogenesis Abundant (LEA) Proteins in Monocotyledonous Plants: Genomic Organization and Transcript Accumulation Patterns in Response to Stress in Oryza sativa. Plant Molecular Biology Reporter, 2014, 32, 198-208.	1.8	7
10	Interaction between salt and heat stress: when two wrongs make a right. Plant, Cell and Environment, 2014, 37, 1042-1045.	5.7	16
11	Physiological traits related to terminal drought resistance in common bean (<i>Phaseolus) Tj ETQq1 1 0.78431</i>	4 rgȝ닷/Ov	erlock 10 Tf 5
12	Ammonium formation and assimilation in PSARKâ^·IPT tobacco transgenic plants under low N. Journal of Plant Physiology, 2012, 169, 157-162.	3.5	21
13	Parameters Symptomatic for Boron Toxicity in Leaves of Tomato Plants. Journal of Botany, 2012, 2012, 1-17.	1.2	52
14	Physiological analysis of common bean (Phaseolus vulgaris L.) cultivars uncovers characteristics related to terminal drought resistance. Plant Physiology and Biochemistry, 2012, 56, 24-34.	5.8	143
15	Cytokinin-Dependent Improvement in Transgenic P _{SARK} ::IPT Tobacco under Nitrogen Deficiency. Journal of Agricultural and Food Chemistry, 2011, 59, 10491-10495.	5.2	24
16	Ammonia production and assimilation: Its importance as a tolerance mechanism during moderate water deficit in tomato plants. Journal of Plant Physiology, 2011, 168, 816-823.	3.5	60
17	Effect of cytokinins on oxidative stress in tobacco plants under nitrogen deficiency. Environmental and Experimental Botany, 2011, 72, 167-173.	4.2	58
18	Does Iodine Biofortification Affect Oxidative Metabolism in Lettuce Plants?. Biological Trace Element Research, 2011, 142, 831-842.	3.5	51

MIGUEL A ROSALES

#	Article	IF	CITATIONS
19	The effect of environmental conditions on nutritional quality of cherry tomato fruits: evaluation of two experimental Mediterranean greenhouses. Journal of the Science of Food and Agriculture, 2011, 91, 152-162.	3.5	93
20	lodine application affects nitrogen-use efficiency of lettuce plants (Lactuca sativaL.). Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2011, 61, 378-383.	0.6	7
21	Nitrogen-Use Efficiency in Relation to Different Forms and Application Rates of Se in Lettuce Plants. Journal of Plant Growth Regulation, 2010, 29, 164-170.	5.1	34
22	Photorespiration Process and Nitrogen Metabolism in Lettuce Plants (Lactuca sativa L.): Induced Changes in Response to Iodine Biofortification. Journal of Plant Growth Regulation, 2010, 29, 477-486.	5.1	44
23	Response of nitrogen metabolism in lettuce plants subjected to different doses and forms of selenium. Journal of the Science of Food and Agriculture, 2010, 90, 1914-1919.	3.5	57
24	Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Science, 2010, 178, 30-40.	3.6	318
25	Environmental conditions affect pectin solubilization in cherry tomato fruits grown in two experimental Mediterranean greenhouses. Environmental and Experimental Botany, 2009, 67, 320-327.	4.2	13
26	Environmental conditions in relation to stress in cherry tomato fruits in two experimental Mediterranean greenhouses. Journal of the Science of Food and Agriculture, 2009, 89, 735-742.	3.5	21
27	Production and detoxification of H ₂ O ₂ in lettuce plants exposed to selenium. Annals of Applied Biology, 2009, 154, 107-116.	2.5	91
28	Response of nitrogen metabolism to boron toxicity in tomato plants. Plant Biology, 2009, 11, 671-677.	3.8	61
29	Involvement of lignification and membrane permeability in the tomato root response to boron toxicity. Plant Science, 2009, 176, 545-552.	3.6	55
30	Role of nitric oxide under saline stress: implications on proline metabolism. Biologia Plantarum, 2008, 52, 587-591.	1.9	110
31	Biofortification of Se and induction of the antioxidant capacity in lettuce plants. Scientia Horticulturae, 2008, 116, 248-255.	3.6	111
32	Proline metabolism in cherry tomato exocarp in relation to temperature and solar radiation. Journal of Horticultural Science and Biotechnology, 2007, 82, 739-744.	1.9	14
33	Sucrolytic activities in cherry tomato fruits in relation to temperature and solar radiation. Scientia Horticulturae, 2007, 113, 244-249.	3.6	45
34	Grafting between tobacco plants to enhance salinity tolerance. Journal of Plant Physiology, 2006, 163, 1229-1237.	3.5	21
35	Antioxidant content and ascorbate metabolism in cherry tomato exocarp in relation to temperature and solar radiation. Journal of the Science of Food and Agriculture, 2006, 86, 1545-1551.	3.5	113