Mauro MartÃ-n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1623763/publications.pdf

Version: 2024-02-01

20 papers 489

1040056 9 h-index 17 g-index

20 all docs

20 docs citations

times ranked

20

361 citing authors

#	Article	IF	CITATIONS
1	Hydrogen environment embrittlement of stable austenitic steels. International Journal of Hydrogen Energy, 2012, 37, 16231-16246.	7.1	164
2	Influence of machining-induced martensite on hydrogen-assisted fracture of AISI type 304 austenitic stainless steel. International Journal of Hydrogen Energy, 2011, 36, 11195-11206.	7.1	94
3	Effect of alloying elements on hydrogen environment embrittlement of AISI type 304 austenitic stainless steel. International Journal of Hydrogen Energy, 2011, 36, 15888-15898.	7.1	53
4	Development of a stable high-aluminum austenitic stainless steel for hydrogen applications. International Journal of Hydrogen Energy, 2013, 38, 5989-6001.	7.1	28
5	Impact of heat treatment on the mechanical properties of AISI 304L austenitic stainless steel in high-pressure hydrogen gas. Journal of Materials Science, 2012, 47, 6095-6107.	3.7	27
6	Relationship between hydrogen embrittlement and Md30 temperature: Prediction of low-nickel austenitic stainless steel's resistance. International Journal of Hydrogen Energy, 2019, 44, 25064-25075.	7.1	26
7	Lean-alloyed austenitic stainless steel with high resistance against hydrogen environment embrittlement. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7688-7695.	5.6	22
8	S–N fatigue properties of a stable high-aluminum austenitic stainless steel for hydrogen applications. International Journal of Hydrogen Energy, 2013, 38, 9935-9941.	7.1	13
9	Effects of Strain Rate on the TRIP–TWIP Transition of an Austenitic Fe-18Mn-2Si-2Al Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 4058-4066.	2.2	11
10	A thermodynamic approach for the development of austenitic steels with a high resistance to hydrogen gas embrittlement. International Journal of Hydrogen Energy, 2013, 38, 14887-14895.	7.1	9
11	SIMS analysis on austenitic stainless steel: The influence of type of oxide surface layer on hydrogen embrittlement. Journal of Alloys and Compounds, 2013, 580, S13-S17.	5 . 5	7
12	Computer assisted development of high alloyed steels for hydrogen applications. HTM - Journal of Heat Treatment and Materials, 2010, 65, 230-234.	0.2	6
13	SIMS study on the surface chemistry of stainless steel AISI 304 cylindrical tensile test samples showing hydrogen embrittlement. Journal of Alloys and Compounds, 2011, 509, S885-S890.	5.5	5
14	Pearlite Development in Commercial Hadfield Steel by Means of Isothermal Reactions. Metallography, Microstructure, and Analysis, 2017, 6, 591-597.	1.0	5
15	Role of surface oxide layers in the hydrogen embrittlement of austenitic stainless steels: A TOF-SIMS study. Acta Materialia, 2019, 180, 329-340.	7.9	5
16	Utilization of sound signals to evaluate the risk of slopping in oxygen converters. Revue De Metallurgie, 2010, 107, 309-317.	0.3	4
17	Influence of Pearlite Formation on the Ductility Response of Commercial Hadfield Steel. Metallography, Microstructure, and Analysis, 2016, 5, 505-511.	1.0	4
18	Development of Lean Alloyed Austenitic Stainless Steels with Reduced Tendency to Hydrogen Environment Embrittlement. Materials Science Forum, 0, 706-709, 1041-1046.	0.3	3

#	Article	IF	CITATIONS
19	Impact of the Microstructure and Surface Finishing on the Ductility Response of AISI type 304L Steel Tested in High Pressure Hydrogen Gas Atmosphere. , 2015, 9, 396-403.		3
20	Fundamental investigation of interfaces in particle reinforced steel sheets processed by thin strip casting. Materialwissenschaft Und Werkstofftechnik, 2009, 40, 813-819.	0.9	0