List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1623197/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Upgrade of an old drug: Auranofin in innovative cancer therapies to overcome drug resistance and to increase drug effectiveness. Medicinal Research Reviews, 2022, 42, 1111-1146.	10.5	36
2	Modulation of Plasma Proteomic Profile by Regular Training in Male and Female Basketball Players: A Preliminary Study. Frontiers in Physiology, 2022, 13, 813447.	2.8	4
3	The effects of two gold-N-heterocyclic carbene (NHC) complexes in ovarian cancer cells: a redox proteomic study. Cancer Chemotherapy and Pharmacology, 2022, 89, 809-823.	2.3	8
4	A Metabolic Change towards Fermentation Drives Cancer Cachexia in Myotubes. Biomedicines, 2021, 9, 698.	3.2	7
5	Au2phen and Auoxo6, Two Dinuclear Oxo-Bridged Gold(III) Compounds, Induce Apoptotic Signaling in Human Ovarian A2780 Cancer Cells. Biomedicines, 2021, 9, 871.	3.2	8
6	The Adipokines in Cancer Cachexia. International Journal of Molecular Sciences, 2020, 21, 4860.	4.1	25
7	Postactivation potentiation improves athletic performance without affecting plasma oxidative level. Journal of Sports Medicine and Physical Fitness, 2019, 59, 975-981.	0.7	6
8	Role of adiponectin in the metabolism of skeletal muscles in collagen VI–related myopathies. Journal of Molecular Medicine, 2019, 97, 793-801.	3.9	5
9	Adiponectin in Myopathies. International Journal of Molecular Sciences, 2019, 20, 1544.	4.1	14
10	Replacement of the Thiosugar of Auranofin with Iodide Enhances the Anticancer Potency in a Mouse Model of Ovarian Cancer. ACS Medicinal Chemistry Letters, 2019, 10, 656-660.	2.8	64
11	Oxidative stress in exercise training: the involvement of inflammation and peripheral signals. Free Radical Research, 2019, 53, 1155-1165.	3.3	53
12	Irreversible plasma and muscle protein oxidation and physical exercise. Free Radical Research, 2019, 53, 126-138.	3.3	9
13	Proteome analysis in dystrophic mdx mouse muscle reveals a drastic alteration of key metabolic and contractile proteins after chronic exercise and the potential modulation by anti-oxidant compounds. Journal of Proteomics, 2018, 170, 43-58.	2.4	27
14	Adiponectin Signaling Pathways in Liver Diseases. Biomedicines, 2018, 6, 52.	3.2	55
15	Data on protein abundance alteration induced by chronic exercise in mdx mice model of Duchenne muscular dystrophy and potential modulation by apocynin and taurine. Data in Brief, 2018, 18, 555-575.	1.0	1
16	Antiproliferative effects of two gold(I)-N-heterocyclic carbene complexes in A2780 human ovarian cancer cells: a comparative proteomic study. Oncotarget, 2018, 9, 28042-28068.	1.8	53
17	Auranofin, Et ₃ PAuCl, and Et ₃ PAuI Are Highly Cytotoxic on Colorectal Cancer Cells: A Chemical and Biological Study. ACS Medicinal Chemistry Letters, 2017, 8, 997-1001.	2.8	91
18	Profiling Carbonylated Proteins in Heart and Skeletal Muscle Mitochondria from Trained and Untrained Mice. Journal of Proteome Research, 2016, 15, 3666-3678.	3.7	11

#	Article	IF	CITATIONS
19	Activation of autophagy by globular adiponectin is required for muscle differentiation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 694-702.	4.1	28
20	Cellular response to empty and palladiumâ€conjugated aminoâ€polystyrene nanospheres uptake: A proteomic study. Proteomics, 2015, 15, 34-43.	2.2	11
21	Evidence that the antiproliferative effects of auranofin in Saccharomyces cerevisiae arise from inhibition of mitochondrial respiration. International Journal of Biochemistry and Cell Biology, 2015, 65, 61-71.	2.8	12
22	Comparative proteomic analysis of two distinct stem-cell populations from human amniotic fluid. Molecular BioSystems, 2015, 11, 1622-1632.	2.9	7
23	Proteomic analysis of the cytotoxic effects induced by the organogold(<scp>iii</scp>) complex Aubipy _c in cisplatin-resistant A2780 ovarian cancer cells: further evidence for the glycolytic pathway implication. Molecular BioSystems, 2015, 11, 1653-1667.	2.9	10
24	Adiponectin as a tissue regenerating hormone: more than a metabolic function. Cellular and Molecular Life Sciences, 2014, 71, 1917-1925.	5.4	54
25	Hyperglycemia and angiotensin II cooperate to enhance collagen I deposition by cardiac fibroblasts through a ROS-STAT3-dependent mechanism. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2603-2610.	4.1	39
26	Proteomic analysis of A2780/S ovarian cancer cell response to the cytotoxic organogold(III) compound Aubipyc. Journal of Proteomics, 2014, 103, 103-120.	2.4	37
27	Proteomic Identification of VEGF-dependent Protein Enrichment to Membrane Caveolar-raft Microdomains in Endothelial Progenitor Cells. Molecular and Cellular Proteomics, 2013, 12, 1926-1938.	3.8	9
28	Proteomic and Carbonylation Profile Analysis of Rat Skeletal Muscles following Acute Swimming Exercise. PLoS ONE, 2013, 8, e71839.	2.5	11
29	RND-4 efflux transporter gene deletion in Burkholderia cenocepacia J2315: a proteomic analysis. Journal of Proteome Science and Computational Biology, 2013, 2, 1.	1.0	3
30	Proteomic analysis of ovarian cancer cell responses to cytotoxic gold compounds. Metallomics, 2012, 4, 307.	2.4	39
31	Proteomic analysis and protein carbonylation profile in trained and untrained rat muscles. Journal of Proteomics, 2012, 75, 978-992.	2.4	33
32	Cellular Redox Imbalance and Changes of Protein S-glutathionylation Patterns Are Associated with Senescence Induced by Oncogenic H-Ras. PLoS ONE, 2012, 7, e52151.	2.5	25
33	Evaluation of <i><scp>SCO</scp>1</i> deletion on <i><scp>S</scp>accharomyces cerevisiae</i> metabolism through a proteomic approach. Proteomics, 2012, 12, 1767-1780.	2.2	2
34	Soil solid phases effects on the proteomic analysis of Cupriavidus metallidurans CH34. Biology and Fertility of Soils, 2012, 48, 425-433.	4.3	12
35	A proteomic approach to identify plasma proteins in patients with abdominal aortic aneurysm. Molecular BioSystems, 2011, 7, 2855.	2.9	28
36	Plasma proteincarbonylation and physical exercise. Molecular BioSystems, 2011, 7, 640-650.	2.9	25

#	Article	IF	CITATIONS
37	Extraction of microbial proteome from soil: potential and limitations assessed through a model study. European Journal of Soil Science, 2011, 62, 74-81.	3.9	48
38	Exploring the biochemical mechanisms of cytotoxic gold compounds: a proteomic study. Journal of Biological Inorganic Chemistry, 2010, 15, 573-582.	2.6	60
39	Effect of different glucose concentrations on proteome of Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 1516-1525.	2.3	30
40	Proteomic and Metallomic Strategies for Understanding the Mode of Action of Anticancer Metallodrugs. Anti-Cancer Agents in Medicinal Chemistry, 2010, 10, 324-337.	1.7	31
41	Different carbon sources affect lifespan and protein redox state during Saccharomyces cerevisiae chronological ageing. Cellular and Molecular Life Sciences, 2009, 66, 933-947.	5.4	28
42	Proteomic analysis of cells exposed to prefibrillar aggregates of HypF-N. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 1243-1250.	2.3	3
43	Novel insights into phenotype and mitochondrial proteome of yeast mutants lacking proteins Sco1p or Sco2p. Mitochondrion, 2009, 9, 103-114.	3.4	7
44	Site-directed mutagenesis of two aromatic residues lining the active site pocket of the yeast Ltp1. Biochimica Et Biophysica Acta - General Subjects, 2007, 1770, 753-762.	2.4	6
45	An integrated analysis of the effects of Esculentin 1–21 on Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 688-700.	2.3	22
46	Protein expression profiles inSaccharomyces cerevisiae during apoptosis induced by H2O2. Proteomics, 2007, 7, 1434-1445.	2.2	46
47	In Saccharomyces cerevisiae an unbalanced level of tyrosine phosphorylation down-regulates the Ras/PKA pathway. International Journal of Biochemistry and Cell Biology, 2006, 38, 444-460.	2.8	10
48	Expression of the Stp1 LMW-PTP and inhibition of protein CK2 display a cooperative effect on immunophilin Fpr3 tyrosine phosphorylation and Saccharomyces cerevisiae growth. Cellular and Molecular Life Sciences, 2004, 61, 1176-1184.	5.4	12
49	The in vivo tyrosine phosphorylation level of yeast immunophilin Fpr3 is influenced by the LMW-PTP Ltp1. Biochemical and Biophysical Research Communications, 2004, 321, 424-431.	2.1	6
50	Expression of the small tyrosine phosphatase (Stp1) inSaccharomyces cerevisiae: A study on protein tyrosine phosphorylation. Electrophoresis, 2001, 22, 576-585.	2.4	16
51	Mmf1p, a Novel Yeast Mitochondrial Protein Conserved throughout Evolution and Involved in Maintenance of the Mitochondrial Genome. Molecular and Cellular Biology, 2000, 20, 7784-7797.	2.3	55
52	Mutational analysis of acylphosphatase suggests the importance of topology and contact order in protein folding. Nature Structural Biology, 1999, 6, 1005-1009.	9.7	257
53	A novel interaction mechanism accounting for different acylphosphatase effects on cardiac and fast twitch skeletal muscle sarcoplasmic reticulum calcium pumps. FEBS Letters, 1999, 443, 308-312.	2.8	10
54	Cloning, expression and characterisation of a new human low M r phosphotyrosine protein phosphatase originating by alternative splicing. FEBS Letters, 1998, 431, 111-115.	2.8	13

#	Article	IF	CITATIONS
55	Drosophila melanogasteracylphosphatase: A common ancestor for acylphosphatase isoenzymes of vertebrate species. FEBS Letters, 1998, 433, 205-210.	2.8	11
56	Cloning of murine low molecular weight phosphotyrosine protein phosphatase cDNA: identification of a new isoform. FEBS Letters, 1998, 437, 263-266.	2.8	15
57	Conformational Stability of Muscle Acylphosphatase:Â The Role of Temperature, Denaturant Concentration, and pHâ€. Biochemistry, 1998, 37, 1447-1455.	2.5	57
58	Structural characterization of the transition state for folding of muscle acylphosphatase 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1998, 283, 893-903.	4.2	54
59	Structural and Kinetic Investigations on the 15â^'21 and 42â^'45 Loops of Muscle Acylphosphatase:Â Evidence for Their Involvement in Enzyme Catalysis and Conformational Stabilizationâ€. Biochemistry, 1997, 36, 7217-7224.	2.5	14
60	Looking for Residues Involved in the Muscle Acylphosphatase Catalytic Mechanism and Structural Stabilization:  Role of Asn41, Thr42, and Thr46. Biochemistry, 1996, 35, 7077-7083.	2.5	48
61	C-terminal region contributes to muscle acylphosphatase three-dimensional structure stabilisation. FEBS Letters, 1996, 384, 172-176.	2.8	12
62	Properties of Cys21-mutated muscle acylphosphatases. The Protein Journal, 1996, 15, 27-34.	1.1	8
63	Properties of N-terminus truncated and C-terminus mutated muscle acylphosphatases. FEBS Letters, 1995, 362, 175-179.	2.8	11
64	Expression, purification and kinetic behaviour of fission yeast lowMrprotein-tyrosine phosphatase. FEBS Letters, 1995, 375, 235-238.	2.8	13
65	Arginine-23 is involved in the catalytic site of muscle acylphosphatase. BBA - Proteins and Proteomics, 1994, 1208, 75-80.	2.1	31