List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1622967/publications.pdf Version: 2024-02-01

SONIA SILVA

#	Article	IF	CITATIONS
1	Orchestrating entrepreneurial ecosystems in circular economy: the new paradigm of sustainable competitiveness. Management of Environmental Quality, 2022, 33, 103-123.	4.3	13
2	Characterization of a biofilm formed by <i>Fusarium oxysporum</i> on the human nails. International Journal of Dermatology, 2022, 61, 191-198.	1.0	10
3	Antisense locked nucleic acid gapmers to control Candida albicans filamentation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 39, 102469.	3.3	1
4	Anti-EFG1 2′-OMethylRNA oligomer inhibits Candida albicans filamentation and attenuates the candidiasis in Galleria mellonella. Molecular Therapy - Nucleic Acids, 2022, 27, 517-523.	5.1	11
5	Evaluation of biofilm formation on acrylic resin surfaces coated with silicon dioxide: an in situ study. Brazilian Oral Research, 2022, 36, e007.	1.4	0
6	The impact of securities regulation in the European Union on M&A: Does it compensate to go beyond borders?. Journal of Financial Regulation and Compliance, 2022, ahead-of-print, .	1.5	0
7	Vulvovaginal candidiasis and asymptomatic vaginal colonization in Portugal: Epidemiology, risk factors and antifungal pattern. Medical Mycology, 2022, 60, .	0.7	7
8	Cationic lipid-based formulations for encapsulation and delivery of anti- <i>EFG1</i> 2′ <i>O</i> MethylRNA oligomer. Medical Mycology, 2022, 60, .	0.7	2
9	Revealing Candida glabrata biofilm matrix proteome: global characterization and pH response. Biochemical Journal, 2021, 478, 961-974.	3.7	2
10	Candida Albicans Virulence Factors and Its Pathogenicity. Microorganisms, 2021, 9, 704.	3.6	11
11	Polyamide Microsized Particulate Polyplex Carriers for the 2′-OMethylRNA EFG1 Antisense Oligonucleotide. ACS Applied Bio Materials, 2021, 4, 4607-4617.	4.6	1
12	The combined application of the anti-RAS1 and anti-RIM101 2'-OMethylRNA oligomers enhances Candida albicans filamentation control. Medical Mycology, 2021, 59, 1024-1031.	0.7	0
13	The impact of securities regulation on the information environment around stock-financed acquisitions. Journal of International Financial Markets, Institutions and Money, 2021, 73, 101374.	4.2	2
14	Mycosands: Fungal diversity and abundance in beach sand and recreational waters — Relevance to human health. Science of the Total Environment, 2021, 781, 146598.	8.0	24
15	Exploration of anti EFG1 locked nucleic acid gapmers to control Candida albicans filamentation. Access Microbiology, 2021, 3, .	0.5	0
16	Hormones modulate Candida vaginal isolates biofilm formation and decrease their susceptibility to azoles and hydrogen peroxide. Medical Mycology, 2020, 58, 341-350.	0.7	7
17	The impact of cross-delisting from the U.S. On firms' financial constraints. Journal of Business Research, 2020, 108, 132-146.	10.2	8
18	Environmental pH modulates biofilm formation and matrix composition in <i>Candida albicans</i> and <i>Candida glabrata</i> . Biofouling, 2020, 36, 621-630.	2.2	12

#	Article	IF	CITATIONS
19	Effect of progesterone on Candida albicans biofilm formation under acidic conditions: A transcriptomic analysis. International Journal of Medical Microbiology, 2020, 310, 151414.	3.6	8
20	Transcriptional responses of Candida glabrata biofilm cells to fluconazole are modulated by the carbon source. Npj Biofilms and Microbiomes, 2020, 6, 4.	6.4	16
21	Candida albicans Adaptation on Simulated Human Body Fluids under Different pH. Microorganisms, 2020, 8, 511.	3.6	11
22	Application of 2′-OMethylRNA′ Antisense Oligomer to Control Candida albicans EFG1 Virulence Determinant. Molecular Therapy - Nucleic Acids, 2019, 18, 508-517.	5.1	11
23	Antimicrobial coating of textiles by laccase in situ polymerization of catechol and p-phenylenediamine. Reactive and Functional Polymers, 2019, 136, 25-33.	4.1	27
24	Financial Constraints and Financial Crises: The Case of Portuguese Listed Companies. International Journal of Financial Research, 2018, 9, 64.	0.4	0
25	The Role of Candida albicans Transcription Factor RLM1 in Response to Carbon Adaptation. Frontiers in Microbiology, 2018, 9, 1127.	3.5	23
26	The CgHaa1-Regulon Mediates Response and Tolerance to Acetic Acid Stress in the Human Pathogen <i>Candida glabrata</i> . G3: Genes, Genomes, Genetics, 2017, 7, 1-18.	1.8	24
27	The Effectiveness of Voriconazole in Therapy of Candida glabrata's Biofilms Oral Infections and Its Influence on the Matrix Composition and Gene Expression. Mycopathologia, 2017, 182, 653-664.	3.1	24
28	Antibiofilm activity of propolis extract on <i>Fusarium</i> species from onychomycosis. Future Microbiology, 2017, 12, 1311-1321.	2.0	30
29	The carboxylic acid transporters Jen1 and Jen2 affect the architecture and fluconazole susceptibility of <i>Candida albicans</i> biofilm in the presence of lactate. Biofouling, 2017, 33, 943-954.	2.2	12
30	Susceptibility testing of Candida albicans and Candida glabrata to Glycyrrhiza glabra L Industrial Crops and Products, 2017, 108, 480-484.	5.2	4
31	Portrait of Candida Species Biofilm Regulatory Network Genes. Trends in Microbiology, 2017, 25, 62-75.	7.7	108
32	Candida Species Biofilms' Antifungal Resistance. Journal of Fungi (Basel, Switzerland), 2017, 3, 8.	3.5	184
33	Candida glabrata Biofilms: How Far Have We Come?. Journal of Fungi (Basel, Switzerland), 2017, 3, 11.	3.5	80
34	Novel strategies to fight <i>Candida</i> species infection. Critical Reviews in Microbiology, 2016, 42, 594-606.	6.1	60
35	<i>Candida glabrata's</i> recurrent infections: biofilm formation during Amphotericin B treatment. Letters in Applied Microbiology, 2016, 63, 77-81.	2.2	17
36	Discrimination of clinically relevant Candida species by Fourier-transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR). RSC Advances, 2016, 6, 92065-92072.	3.6	7

#	Article	IF	CITATIONS
37	<i>Candida tropicalis</i> biofilm and human epithelium invasion is highly influenced by environmental pH. Pathogens and Disease, 2016, 74, ftw101.	2.0	13
38	Propolis: a potential natural product to fight <i>Candida</i> species infections. Future Microbiology, 2016, 11, 1035-1046.	2.0	53
39	Bioactive properties and functional constituents of Hypericum androsaemum L.: A focus on the phenolic profile. Food Research International, 2016, 89, 422-431.	6.2	19
40	Disinfectants to Fight Oral Candida Biofilms. Advances in Experimental Medicine and Biology, 2016, 931, 83-93.	1.6	5
41	Effect of Voriconazole on Candida tropicalis Biofilms: Relation with ERG Genes Expression. Mycopathologia, 2016, 181, 643-651.	3.1	11
42	Candida tropicalis Biofilms: Biomass, Metabolic Activity and Secreted Aspartyl Proteinase Production. Mycopathologia, 2016, 181, 217-224.	3.1	22
43	In vitro anti-Candida activity of Glycyrrhiza glabra L Industrial Crops and Products, 2016, 83, 81-85.	5.2	25
44	Vulvovaginal candidiasis: Epidemiology, microbiology and risk factors. Critical Reviews in Microbiology, 2016, 42, 905-927.	6.1	399
45	Do Improvements in the Information Environment Enhance Insiders' Ability to Learn from Outsiders?. Journal of Accounting Research, 2015, 53, 863-905.	4.5	56
46	Candida glabrata susceptibility to antifungals and phagocytosis is modulated by acetate. Frontiers in Microbiology, 2015, 6, 919.	3.5	45
47	<i>In Vivo</i> Anti- <i>Candida</i> Activity of Phenolic Extracts and Compounds: Future Perspectives Focusing on Effective Clinical Interventions. BioMed Research International, 2015, 2015, 1-14.	1.9	17
48	Activity of phenolic compounds from plant origin against Candida species. Industrial Crops and Products, 2015, 74, 648-670.	5.2	108
49	Silver Nanoparticles to Fight Candida Coinfection in the Oral Cavity. , 2015, , 283-295.		0
50	Plants used in folk medicine: The potential of their hydromethanolic extracts against Candida species. Industrial Crops and Products, 2015, 66, 62-67.	5.2	44
51	Detection and Quantification of Fluconazole Within Candida glabrata Biofilms. Mycopathologia, 2015, 179, 391-395.	3.1	9
52	Candida bracarensis: Evaluation of Virulence Factors and its Tolerance to Amphotericin B and Fluconazole. Mycopathologia, 2015, 180, 305-315.	3.1	8
53	Candida tropicalis biofilm's matrix—involvement on its resistance to amphotericin B. Diagnostic Microbiology and Infectious Disease, 2015, 83, 165-169.	1.8	34
54	Influence of glucose concentration on the structure and quantity of biofilms formed byCandida parapsilosis. FEMS Yeast Research, 2015, 15, fov043.	2.3	21

#	Article	IF	CITATIONS
55	Decoction, infusion and hydroalcoholic extract of cultivated thyme: Antioxidant and antibacterial activities, and phenolic characterisation. Food Chemistry, 2015, 167, 131-137.	8.2	128
56	Evaluation of bioactive properties and phenolic compounds in different extracts prepared from Salvia officinalis L. Food Chemistry, 2015, 170, 378-385.	8.2	180
57	Dynamics of Biofilm Formation and the Interaction between Candida albicans and Methicillin-Susceptible (MSSA) and -Resistant Staphylococcus aureus (MRSA). PLoS ONE, 2015, 10, e0123206.	2.5	115
58	Participation of Candida albicans Transcription Factor RLM1 in Cell Wall Biogenesis and Virulence. PLoS ONE, 2014, 9, e86270.	2.5	64
59	Effects of fluconazole on <i>Candida glabrata</i> biofilms and its relationship with ABC transporter gene expression. Biofouling, 2014, 30, 447-457.	2.2	49
60	Decoction, infusion and hydroalcoholic extract of Origanum vulgare L.: Different performances regarding bioactivity and phenolic compounds. Food Chemistry, 2014, 158, 73-80.	8.2	101
61	Adhesion of Candida biofilm cells to human epithelial cells and polystyrene after treatment with silver nanoparticles. Colloids and Surfaces B: Biointerfaces, 2014, 114, 410-412.	5.0	17
62	Candida glabrata: a review of its features and resistance. European Journal of Clinical Microbiology and Infectious Diseases, 2014, 33, 673-688.	2.9	216
63	Effect of progesterone on Candida albicans vaginal pathogenicity. International Journal of Medical Microbiology, 2014, 304, 1011-1017.	3.6	34
64	Antifungal activity of phenolic compounds identified in flowers from North Eastern Portugal against <i>Candida</i> species. Future Microbiology, 2014, 9, 139-146.	2.0	78
65	Candidiasis: Predisposing Factors, Prevention, Diagnosis and Alternative Treatment. Mycopathologia, 2014, 177, 223-240.	3.1	168
66	Candida albicans promotes invasion and colonisation of Candida glabrata in a reconstituted human vaginal epithelium. Journal of Infection, 2014, 69, 396-407.	3.3	61
67	Identification of <i>Candida</i> species in the clinical laboratory: a review of conventional, commercial, and molecular techniques. Oral Diseases, 2014, 20, 329-344.	3.0	50
68	Antifungal activity against Candida species and phenolic characterization of decoction, infusion and hydroalcoholic extract of cultivated Salvia officinalis L Planta Medica, 2014, 80, .	1.3	1
69	Antifungal activity and detailed chemical characterization of Cistus ladanifer phenolic extracts. Industrial Crops and Products, 2013, 41, 41-45.	5.2	89
70	Characterization of phenolic compounds in wild medicinal flowers from Portugal by HPLC–DAD–ESI/MS and evaluation of antifungal properties. Industrial Crops and Products, 2013, 44, 104-110.	5.2	72
71	Silver colloidal nanoparticles: effect on matrix composition and structure of <i>Candida albicans</i> and <i>Candida glabrata</i> biofilms. Journal of Applied Microbiology, 2013, 114, 1175-1183.	3.1	54
72	Antifungal activity of silver nanoparticles in combination with nystatin and chlorhexidine digluconate against <i><scp>C</scp>andida albicans</i> and <i><scp>C</scp>andida glabrata</i> biofilms. Mycoses, 2013, 56, 672-680.	4.0	83

SONIA SILVA

#	Article	IF	CITATIONS
73	The effect of silver nanoparticles and nystatin on mixed biofilms of <i>Candida glabrata</i> and <i>Candida albicans</i> on acrylic. Medical Mycology, 2013, 51, 178-184.	0.7	72
74	Evaluation of the ability of <i>C. albicans</i> to form biofilm in the presence of phage-resistant phenotypes of <i>P. aeruginosa</i> . Biofouling, 2013, 29, 1169-1180.	2.2	7
75	Silver nanoparticles: influence of stabilizing agent and diameter on antifungal activity against Candida albicans and Candida glabrata biofilms. Letters in Applied Microbiology, 2012, 54, 383-391.	2.2	94
76	Candida tropicalis biofilms: Effect on urinary epithelial cells. Microbial Pathogenesis, 2012, 53, 95-99.	2.9	24
77	Insights into Candida tropicalis nosocomial infections and virulence factors. European Journal of Clinical Microbiology and Infectious Diseases, 2012, 31, 1399-1412.	2.9	88
78	<i>Candida glabrata, Candida parapsilosis</i> and <i>Candida tropicalis</i> : biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiology Reviews, 2012, 36, 288-305.	8.6	714
79	<i>Candida tropicalis</i> biofilms: artificial urine, urinary catheters and flow model. Medical Mycology, 2011, 49, 1-9.	0.7	33
80	Silver colloidal nanoparticles: antifungal effect against adhered cells and biofilms of <i>Candida albicans</i> and <i>Candida glabrata</i> . Biofouling, 2011, 27, 711-719.	2.2	186
81	Adherence and biofilm formation of non-Candida albicans Candida species. Trends in Microbiology, 2011, 19, 241-247.	7.7	208
82	The role of secreted aspartyl proteinases in Candida tropicalis invasion and damage of oral mucosa. Clinical Microbiology and Infection, 2011, 17, 264-272.	6.0	47
83	<i>Candida glabrata</i> and <i>Candida albicans</i> coâ€infection of an <i>in vitro</i> oral epithelium. Journal of Oral Pathology and Medicine, 2011, 40, 421-427.	2.7	86
84	<i>Candida</i> biofilms and oral candidosis: treatment and prevention. Periodontology 2000, 2011, 55, 250-265.	13.4	165
85	An in vitro evaluation of Candida tropicalis infectivity using human cell monolayers. Journal of Medical Microbiology, 2011, 60, 1270-1275.	1.8	16
86	Effect of antifungal agents on non- <i>Candida albicans Candida</i> species enzymatic activity. , 2011, , .		2
87	Crystal violet staining to quantify Candida adhesion to epithelial cells. British Journal of Biomedical Science, 2010, 67, 120-125.	1.3	37
88	InÂVitro Biofilm Activity of Non-Candida albicans Candida Species. Current Microbiology, 2010, 61, 534-540.	2.2	82
89	Candida albicans virulence and drug-resistance requires the O-acyltransferase Gup1p. BMC Microbiology, 2010, 10, 238.	3.3	33
90	Silicone colonization by non-Candida albicans Candida species in the presence of urine. Journal of Medical Microbiology, 2010, 59, 747-754.	1.8	68

SONIA SILVA

#	Article	IF	CITATIONS
91	Characterization of <i>Candida parapsilosis</i> infection of an <i>in vitro</i> reconstituted human oral epithelium. European Journal of Oral Sciences, 2009, 117, 669-675.	1.5	35
92	Biofilms of non- <i>Candida albicans Candida</i> species: quantification, structure and matrix composition. Medical Mycology, 2009, 47, 681-689.	0.7	318
93	Adhesion to and Viability of Listeria monocytogenes on Food Contact Surfaces. Journal of Food Protection, 2008, 71, 1379-1385.	1.7	126
94	Absence of Gup1p inSaccharomyces cerevisiaeresults in defective cell wall composition, assembly, stability and morphology. FEMS Yeast Research, 2006, 6, 1027-1038.	2.3	43
95	Biofilms of non-Candida albicans Candida species: quantification, structure and matrix composition. Medical Mycology, 0, , 1-9.	0.7	11
96	O impacto das restrições financeiras no investimento e nas reservas de caixa das PME do setor da metalomecânica. , 0, 35, 1-19.		0