

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1622914/publications.pdf Version: 2024-02-01

XIN SIIN

#	Article	IF	CITATIONS
1	Increased Peripheral Blood Neutrophil Activation Phenotypes and Neutrophil Extracellular Trap Formation in Critically III Coronavirus Disease 2019 (COVID-19) Patients: A Case Series and Review of the Literature. Clinical Infectious Diseases, 2022, 74, 479-489.	2.9	87
2	Identification of lung innervating sensory neurons and their target specificity. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L50-L63.	1.3	25
3	E3 ubiquitin ligase FBXW7 balances airway cell fates. Developmental Biology, 2022, 483, 89-97.	0.9	5
4	A census of the lung: CellCards from LungMAP. Developmental Cell, 2022, 57, 112-145.e2.	3.1	67
5	Temporal analyses of postnatal liver development and maturation by single-cell transcriptomics. Developmental Cell, 2022, 57, 398-414.e5.	3.1	30
6	Excess neuropeptides in lung signal through endothelial cells to impair gas exchange. Developmental Cell, 2022, 57, 839-853.e6.	3.1	14
7	Halting SARSâ€CoVâ€2: lung organoids step up to the plate. EMBO Journal, 2021, 40, e107651.	3.5	5
8	17β-estradiol and estrogen receptor α protect right ventricular function in pulmonary hypertension via BMPR2 and apelin. Journal of Clinical Investigation, 2021, 131, .	3.9	47
9	Neuroendocrine cells in lung development and disease. , 2021, , 44-55.		2
10	National Heart, Lung, and Blood Institute and Building Respiratory Epithelium and Tissue for Health (BREATH) Consortium Workshop Report: Moving Forward in Lung Regeneration. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 22-29.	1.4	2
11	Age-dependent regulation of SARS-CoV-2 cell entry genes and cell death programs correlates with COVID-19 severity. Science Advances, 2021, 7, .	4.7	49
12	Rare and de novo variants in 827 congenital diaphragmatic hernia probands implicate LONP1 as candidate risk gene. American Journal of Human Genetics, 2021, 108, 1964-1980.	2.6	22
13	Mouse model of experimental pulmonary hypertension: Lung angiogram and right heart catheterization. Pulmonary Circulation, 2021, 11, 1-17.	0.8	8
14	Eosinophils set DNA traps in allergic asthma. Nature Cell Biology, 2021, 23, 1057-1059.	4.6	2
15	Endothelial upregulation of mechanosensitive channel Piezo1 in pulmonary hypertension. American Journal of Physiology - Cell Physiology, 2021, 321, C1010-C1027.	2.1	29
16	COVID-19 in Early Life: Infants and Children Are Affected Too. Physiology, 2021, 36, 359-366.	1.6	5
17	Anatomical structures, cell types and biomarkers of the Human Reference Atlas. Nature Cell Biology, 2021, 23, 1117-1128.	4.6	68
18	A novel 1-D densely connected feature selection convolutional neural network for heart sounds classification. Annals of Translational Medicine, 2021, 9, 1752-1752.	0.7	3

Xin Sun

#	Article	IF	CITATIONS
19	Estrogen receptor-α prevents right ventricular diastolic dysfunction and fibrosis in female rats. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H1459-H1473.	1.5	16
20	A transitional stem cell state in the lung. Nature Cell Biology, 2020, 22, 1025-1026.	4.6	33
21	Less Is More: Rare Pulmonary Neuroendocrine Cells Function as Critical Sensors in Lung. Developmental Cell, 2020, 55, 123-132.	3.1	27
22	Smooth Muscle Differentiation Is Essential for Airway Size, Tracheal Cartilage Segmentation, but Dispensable for Epithelial Branching. Developmental Cell, 2020, 53, 73-85.e5.	3.1	41
23	Validation of a nicotine vapor self-administration model in rats with relevance to electronic cigarette use. Neuropsychopharmacology, 2020, 45, 1909-1919.	2.8	40
24	SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell, 2020, 181, 1016-1035.e19.	13.5	1,956
25	Roadmap for the Emerging Field of Cancer Neuroscience. Cell, 2020, 181, 219-222.	13.5	182
26	Myofibroblast contraction is essential for generating and regenerating the gas-exchange surface. Journal of Clinical Investigation, 2020, 130, 2859-2871.	3.9	45
27	Single-cell multiomic profiling of human lungs reveals cell-type-specific and age-dynamic control of SARS-CoV2 host genes. ELife, 2020, 9, .	2.8	129
28	Crouzon syndrome mouse model exhibits cartilage hyperproliferation and defective segmentation in the developing trachea. Science China Life Sciences, 2019, 62, 1375-1380.	2.3	4
29	Bioactive injectable polymethylmethacrylate/silicate bioceramic hybrid cements for percutaneous vertebroplasty and kyphoplasty. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 96, 125-135.	1.5	17
30	E3 ubiquitin ligase MDM2 acts through p53 to control respiratory progenitor cell number and lung size. Development (Cambridge), 2019, 146, .	1.2	17
31	Wheeze No More: Growing Out of Your Dopaminergic Nerves. Immunity, 2019, 51, 977-979.	6.6	0
32	Consider the lung as a sensory organ: A tip from pulmonary neuroendocrine cells. Current Topics in Developmental Biology, 2019, 132, 67-89.	1.0	47
33	Beta-Catenin signaling is essential for mammalian larynx recanalization and establishment of vocal fold progenitor cells. Development (Cambridge), 2018, 145, .	1.2	17
34	The role of FREM2 and FRAS1 in the development of congenital diaphragmatic hernia. Human Molecular Genetics, 2018, 27, 2064-2075.	1.4	16
35	Pulmonary neuroendocrine cells amplify allergic asthma responses. Science, 2018, 360, .	6.0	278
36	<i>Lats</i> inactivation reveals hippo function in alveolar type I cell differentiation during lung transition to air breathing. Development (Cambridge), 2018, 145, .	1.2	60

Xin Sun

#	Article	IF	CITATIONS
37	Pdgfra marks a cellular lineage with distinct contributions to myofibroblasts in lung maturation and injury response. ELife, 2018, 7, .	2.8	137
38	Embryology meets molecular biology: Deciphering the apical ectodermal ridge. Developmental Biology, 2017, 429, 387-390.	0.9	7
39	Etv5 Regulates IL-10 Production in Th Cells. Journal of Immunology, 2017, 198, 2165-2171.	0.4	11
40	Levelâ€ s pecific amputations and resulting regenerative outcomes in the mouse distal phalanx. Wound Repair and Regeneration, 2017, 25, 443-453.	1.5	16
41	Congenital diaphragmatic hernias: from genes to mechanisms to therapies. DMM Disease Models and Mechanisms, 2017, 10, 955-970.	1.2	143
42	FGF receptors control alveolar elastogenesis. Development (Cambridge), 2017, 144, 4563-4572.	1.2	31
43	E3 ubiquitin ligase RFWD2 controls lung branching through protein-level regulation of ETV transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7557-7562.	3.3	30
44	The ETS Family Transcription Factors Etv5 and PU.1 Function in Parallel To Promote Th9 Cell Development. Journal of Immunology, 2016, 197, 2465-2472.	0.4	33
45	An Ephrin-Eph Tug and Push in Left-Right Organ Placement. Developmental Cell, 2016, 39, 282-283.	3.1	0
46	TET-mediated DNA demethylation controls gastrulation by regulating Lefty–Nodal signalling. Nature, 2016, 538, 528-532.	13.7	163
47	A three-dimensional study of alveologenesis in mouse lung. Developmental Biology, 2016, 409, 429-441.	0.9	123
48	Pulmonary neuroendocrine cells function as airway sensors to control lung immune response. Science, 2016, 351, 707-710.	6.0	184
49	Ontogeny of the mouse vocal fold epithelium. Developmental Biology, 2015, 399, 263-282.	0.9	39
50	The pulmonary mesenchyme directs lung development. Current Opinion in Genetics and Development, 2015, 32, 98-105.	1.5	111
51	FGF-Regulated ETV Transcription Factors Control FGF-SHH Feedback Loop in Lung Branching. Developmental Cell, 2015, 35, 322-332.	3.1	111
52	Comparison of Temporal Transcriptomic Profiles from Immature Lungs of Two Rat Strains Reveals a Viral Response Signature Associated with Chronic Lung Dysfunction. PLoS ONE, 2014, 9, e112997.	1.1	11
53	The transcription factor Etv5 controls TH17 cell development and allergic airway inflammation. Journal of Allergy and Clinical Immunology, 2014, 134, 204-214.e2.	1.5	37
54	Molecular Determinants of Lung Development. Annals of the American Thoracic Society, 2013, 10, S12-S16.	1.5	73

Xin Sun

#	Article	IF	CITATIONS
55	Establishment of smooth muscle and cartilage juxtaposition in the developing mouse upper airways. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19444-19449.	3.3	65
56	Patterning and plasticity in development of the respiratory lineage. Developmental Dynamics, 2011, 240, 477-485.	0.8	47
57	Signaling through BMP receptors promotes respiratory identity in the foregut via repression of <i>Sox2</i> . Development (Cambridge), 2011, 138, 971-981.	1.2	187
58	β-Catenin promotes respiratory progenitor identity in mouse foregut. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16287-16292.	3.3	201
59	Fibroblast growth factor 9 signaling inhibits airway smooth muscle differentiation in mouse lung. Developmental Dynamics, 2009, 238, 123-137.	0.8	41
60	Conditional gene inactivation reveals roles for <i>Fgf10</i> and <i>Fgfr2</i> in establishing a normal pattern of epithelial branching in the mouse lung. Developmental Dynamics, 2009, 238, 1999-2013.	0.8	171
61	An Fgf/Gremlin Inhibitory Feedback Loop Triggers Termination of Limb Bud Outgrowth. FASEB Journal, 2009, 23, 176.2.	0.2	0
62	Genetic Interactions Between FGF and SHH Signaling in the Vertebrate Limb. FASEB Journal, 2007, 21, A199.	0.2	0
63	Dicerfunction is essential for lung epithelium morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2208-2213.	3.3	382
64	Functions of FGF signalling from the apical ectodermal ridge in limb development. Nature, 2002, 418, 501-508.	13.7	505
65	Conditional inactivation of Fgf4 reveals complexity of signalling during limb bud development. Nature Genetics, 2000, 25, 83-86.	9.4	263
66	Fgf8 signalling from the AER is essential for normal limb development. Nature Genetics, 2000, 26, 460-463.	9.4	403