
Simon Pascal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1622913/publications.pdf Version: 2024-02-01

SIMON PASCAL

#	Article	IF	CITATIONS
1	NIR-to-NIR two-photon bio-imaging using very bright tailored amino-heptamethines dyes. Dyes and Pigments, 2022, 203, 110369.	3.7	6
2	Stabilization of a 12-ï€ electrons diamino-benzoquinonediimine tautomer. Chemical Communications, 2021, 57, 548-551.	4.1	4
3	1D Coordination π–d Conjugated Polymers with Distinct Structures Defined by the Choice of the Transition Metal: Towards a New Class of Antiaromatic Macrocycles. Angewandte Chemie - International Edition, 2021, 60, 439-445.	13.8	23
4	1D Coordination π–d Conjugated Polymers with Distinct Structures Defined by the Choice of the Transition Metal: Towards a New Class of Antiaromatic Macrocycles. Angewandte Chemie, 2021, 133, 443-449.	2.0	0
5	Azacalixphyrins as an innovative alternative for the free-radical photopolymerization under visible and NIR irradiation without the need of co-initiators. Chemical Communications, 2021, 57, 8973-8976.	4.1	3
6	The Quinonoid Zwitterion Interlayer for the Improvement of Charge Carrier Mobility in Organic Field-Effect Transistors. Polymers, 2021, 13, 1567.	4.5	4
7	Significance Of Nuclear Quantum Effects In Hydrogen Bonded Molecular Chains. ACS Nano, 2021, 15, 10357-10365.	14.6	11
8	Modified Indulines: From Dyestuffs to <i>In Vivo</i> Theranostic Agents. ACS Applied Materials & Interfaces, 2021, 13, 30337-30349.	8.0	2
9	Functionalized porphyrins from meso-poly-halogeno-alkyl-dipyrromethanes: synthesis and characterization. Comptes Rendus Chimie, 2021, 24, 27-45.	0.5	1
10	Reversible pH ontrolled Catenation of a Benzobisimidazoleâ€Based Tetranuclear Rectangle. Chemistry - A European Journal, 2021, 27, 15922-15927.	3.3	9
11	Near-infrared dyes for two-photon absorption in the short-wavelength infrared: strategies towards optical power limiting. Chemical Society Reviews, 2021, 50, 6613-6658.	38.1	94
12	Merging polyacenes and cationic helicenes: from weak to intense chiroptical properties in the far red region. Chemical Science, 2020, 11, 1165-1169.	7.4	28
13	Fused bis-azacalixphyrin that reaches NIR-II absorptions. Chemical Communications, 2020, 56, 896-899.	4.1	10
14	Mixed <i>N</i> -aryl/alkyl substitution favours an unusual tautomer of near-infrared absorbing azacalixphyrins. New Journal of Chemistry, 2020, 44, 18130-18137.	2.8	3
15	Impact of Ionâ€Pairing Effects on Linear and Nonlinear Photophysical Properties of Polymethine Dyes**. ChemPhysChem, 2020, 21, 2536-2542.	2.1	14
16	Near-infrared electrochemiluminescence in water through regioselective sulfonation of diaza [4] and [6]helicene dyes. Chemical Communications, 2020, 56, 9771-9774.	4.1	11
17	Synthesis, Resolution, Configurational Stability, and Properties of Cationic Functionalized [5]Helicenes. Journal of Organic Chemistry, 2020, 85, 11908-11923.	3.2	11
18	Small Panchromatic and NIR Absorbers from Quinoid Zwitterions. Organic Letters, 2020, 22, 7997-8001.	4.6	6

SIMON PASCAL

#	Article	IF	CITATIONS
19	Versatile transamination in quinonediimine chemistry: Towards a novel class of water soluble UV/violet chromophores. Tetrahedron Letters, 2019, 60, 151024.	1.4	4
20	Unraveling the Two-Photon and Excited-State Absorptions of Aza-BODIPY Dyes for Optical Power Limiting in the SWIR Band. Journal of Physical Chemistry C, 2019, 123, 23661-23673.	3.1	37
21	Synthesis of the New Cyanine-Labeled Bacterial Lipooligosaccharides for Intracellular Imaging and in Vitro Microscopy Studies. Bioconjugate Chemistry, 2019, 30, 1649-1657.	3.6	13
22	First principles investigation of the spectral properties of neutral, zwitterionic, and bis-cationic azaacenes. Physical Chemistry Chemical Physics, 2019, 21, 22910-22918.	2.8	6
23	Azacalixquinarenes: From Canonical to (Poly-)Zwitterionic Macrocycles. Journal of Organic Chemistry, 2019, 84, 1387-1397.	3.2	14
24	Câ€Functionalized Cationic Diazaoxatriangulenes: Late‣tage Synthesis and Tuning of Physicochemical Properties. Chemistry - A European Journal, 2018, 24, 10186-10195.	3.3	18
25	Design of Near-Infrared-Absorbing Unsymmetrical Polymethine Dyes with Large Quadratic Hyperpolarizabilities. Chemistry of Materials, 2018, 30, 3410-3418.	6.7	35
26	Excimerâ€Based Onâ€Off Bis(pyreneamide) Macrocyclic Chemosensors. Helvetica Chimica Acta, 2018, 101, e1700265.	1.6	18
27	Specific labeling of mitochondria of <i>Chlamydomonas</i> with cationic helicene fluorophores. Organic and Biomolecular Chemistry, 2018, 16, 919-923.	2.8	28
28	Azacalixphyrins as NIR photoacoustic contrast agents. Chemical Communications, 2018, 54, 12365-12368.	4.1	14
29	Controlling the canonical/zwitterionic balance through intramolecular proton transfer: a strategy for vapochromism. Materials Chemistry Frontiers, 2018, 2, 1618-1625.	5.9	15
30	Combined reversible switching of ECD and quenching of CPL with chiral fluorescent macrocycles. Chemical Science, 2018, 9, 7043-7052.	7.4	111
31	Central substitution of azacalixphyrins: a strategy towards acidochromic NIR dyes. Physical Chemistry Chemical Physics, 2018, 20, 20056-20069.	2.8	4
32	Efficient Annihilation Electrochemiluminescence of Cationic Helicene Luminophores. ChemElectroChem, 2017, 4, 1750-1756.	3.4	19
33	[4]Helicene–Squalene Fluorescent Nanoassemblies for Specific Targeting of Mitochondria in Liveâ€Cell Imaging. Advanced Functional Materials, 2017, 27, 1701839.	14.9	32
34	Enantiospecific Elongation of Cationic Helicenes by Electrophilic Functionalization at Terminal Ends. Chemistry - A European Journal, 2017, 23, 13596-13601.	3.3	27
35	Benzoquinonediimine ligands: Synthesis, coordination chemistry and properties. Coordination Chemistry Reviews, 2017, 350, 178-195.	18.8	32
36	Keto-polymethines: a versatile class of dyes with outstanding spectroscopic properties for in cellulo and in vivo two-photon microscopy imaging. Chemical Science, 2017, 8, 381-394.	7.4	43

SIMON PASCAL

#	Article	IF	CITATIONS
37	NIR Electrofluorochromic Properties of Aza-Boron-dipyrromethene Dyes. Scientific Reports, 2016, 6, 18867.	3.3	27
38	Functionalized cationic [4]helicenes with unique tuning of absorption, fluorescence and chiroptical properties up to the far-red range. Chemical Science, 2016, 7, 4685-4693.	7.4	96
39	Zwitterionic [4]helicene: a water-soluble and reversible pH-triggered ECD/CPL chiroptical switch in the UV and red spectral regions. Organic and Biomolecular Chemistry, 2016, 14, 4590-4594.	2.8	67
40	Physicochemical and Electronic Properties of Cationic [6]Helicenes: from Chemical and Electrochemical Stabilities to Farâ€Red (Polarized) Luminescence. Chemistry - A European Journal, 2016, 22, 18394-18403.	3.3	52
41	Physicochemical and Electronic Properties of Cationic [6]Helicenes: from Chemical and Electrochemical Stabilities to Farâ€Red (Polarized) Luminescence. Chemistry - A European Journal, 2016, 22, 18273-18273.	3.3	1
42	Synthesis, Electrochemistry, and Photophysics of Azaâ€BODIPY Porphyrin Dyes. Chemistry - A European Journal, 2016, 22, 4971-4979.	3.3	25
43	Synthesis and electronic properties of polycyclic aromatic hydrocarbons doped with phosphorus and sulfur. Dalton Transactions, 2016, 45, 1896-1903.	3.3	24
44	Bis-triazolyl BODIPYs: a simple dye with strong red-light emission. RSC Advances, 2015, 5, 76342-76345.	3.6	10
45	On the versatility of electronic structures in polymethine dyes. , 2014, , .		1
46	NIR electrochemical fluorescence switching from polymethine dyes. Chemical Science, 2014, 5, 1538-1544.	7.4	42
47	Millisecond lifetime imaging with a europium complex using a commercial confocal microscope under one or two-photon excitation. Chemical Science, 2014, 5, 3475-3485.	7.4	82
48	1,2â€Dihydrophosphete: A Platform for the Molecular Engineering of Electroluminescent Phosphorus Materials for Lightâ€Emitting Devices. Chemistry - A European Journal, 2014, 20, 9784-9793.	3.3	20
49	Expanding the Polymethine Paradigm: Evidence for the Contribution of a Bis-Dipolar Electronic Structure. Journal of Physical Chemistry A, 2014, 118, 4038-4047.	2.5	91
50	Symmetry loss of heptamethine cyanines: an example of dipole generation by ion-pairing effect. , 2013, , .		1
51	Synthesis of a Square-Planar Rhodium Alkylidene N-Heterocyclic Carbene Complex and Its Reactivity Toward Alkenes. Organometallics, 2011, 30, 5208-5213.	2.3	24
52	Preparation of chiral ruthenium(iv) complexes and applications in regio- and enantioselective allylation of phenols. Dalton Transactions, 2011, 40, 5625.	3.3	25