
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1622896/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct measurements of atomic oxygen in the mesosphere and lower thermosphere using terahertz heterodyne spectroscopy. Communications Earth & Environment, 2021, 2, .	2.6	21
2	Magnesium-related shallow donor centers in silicon. Materials Science in Semiconductor Processing, 2021, 130, 105833.	1.9	4
3	Intracenter dipole transitions of a hydrogen-like boron acceptor in diamond: Oscillator strengths and line broadening. Diamond and Related Materials, 2021, 120, 108629.	1.8	2
4	Dual-Band Transmitter and Receiver With Bowtie-Antenna in 0.13 μm SiGe BiCMOS for Gas Spectroscopy at 222 - 270 GHz. IEEE Access, 2021, 9, 124805-124816.	2.6	15
5	A 3.5-THz, ×6-Harmonic, Single-Ended Schottky Diode Mixer for Frequency Stabilization of Quantum-Cascade Lasers. IEEE Transactions on Terahertz Science and Technology, 2021, 11, 684-694.	2.0	14
6	Heterodyne Spectroscopy with a 225 $\hat{a} \in 255$ GHz SiGe BiCMOS Receiver for Space Applications. , 2021, , .		2
7	Calibration-Free Gas Quantification through Wavelength Modulation Spectroscopy in the Millimeter-Wave/Terahertz Range. , 2021, , .		2
8	Phase Locking of 3.5-THz and 4.7-THz Quantum-Cascade Lasers Using a Schottky Diode Harmonic Mixer. , 2021, , .		2
9	Observation of Atomic Oxygen in the Mesosphere and Thermosphere of Earth with the THz Heterodyne Spectrometer GREAT. , 2021, , .		1
10	A Comparison between THz Spectroscopy and GC-MS by Detection of Isopropanol in Human Breath. , 2021, , .		2
11	Resonant boron acceptor states in semiconducting diamond. Physical Review B, 2021, 104, .	1.1	1
12	Magnetoconductance and photoresponse properties of disordered NbTiN films. Physical Review B, 2021, 104, .	1.1	12
13	Infrared absorption cross sections, and oscillator strengths of interstitial and substitutional double donors in silicon. Physical Review Materials, 2021, 5, .	0.9	6
14	Lowâ€level LIBS and Raman data fusion in the context of in situ Mars exploration. Journal of Raman Spectroscopy, 2020, 51, 1682-1701.	1.2	19
15	Evaluation of Low-Cost Thermal Laser Stimulation for Data Extraction and Key Readout. Journal of Hardware and Systems Security, 2020, 4, 24-33.	0.8	8
16	A Compact Circular Multipass Cell for Millimeter-Wave/Terahertz Gas Spectroscopy. IEEE Transactions on Terahertz Science and Technology, 2020, 10, 9-14.	2.0	26
17	Large substitutional impurity isotope shift in infrared spectra of boron-doped diamond. Physical Review B, 2020, 102, .	1.1	4
18	Frequency Tuning of Terahertz Stimulated Emission under the Intracenter Optical Excitation of Uniaxially Stressed Si:Bi. Semiconductors, 2020, 54, 969-974.	0.2	1

#	Article	IF	CITATIONS
19	Terahertz transient stimulated emission from doped silicon. APL Photonics, 2020, 5, 106102.	3.0	2
20	Influence of uniaxial stress on phonon-assisted relaxation in bismuth-doped silicon. Journal of Applied Physics, 2020, 127, 035706.	1.1	3
21	High-Performance GaAs/AlAs Terahertz Quantum-Cascade Lasers For Spectroscopic Applications. IEEE Transactions on Terahertz Science and Technology, 2020, 10, 133-140.	2.0	21
22	Higher-order Zeeman effect of Mg-related donor complexes in silicon. Physical Review B, 2020, 102, .	1.1	3
23	A balloon-borne 4.75 THz-heterodyne receiver to probe atomic oxygen in the atmosphere. , 2020, , .		2
24	Laser emission at 4.5 THz from ¹⁵ NH ₃ and a mid-infrared quantum-cascade laser as a pump source. Optics Express, 2020, 28, 23114.	1.7	10
25	The relaxation times of donor bound electrons in germanium. AIP Conference Proceedings, 2020, , .	0.3	Ο
26	Terahertz Sensing with Quantum-Cascade Lasers. , 2020, , .		0
27	Qualitative and quantitative analysis of terahertz gas-phase spectroscopy using independent component analysis. Chemometrics and Intelligent Laboratory Systems, 2020, 206, 104129.	1.8	8
28	A Portable Terahertz/Millimeter-Wave Spectrometer Based on SiGe BiCMOS Technology for Gas Sensing Applications. , 2020, , .		2
29	A Compact 4.75-THz Source Based on a Quantum-Cascade Laser With a Back-Facet Mirror. IEEE Transactions on Terahertz Science and Technology, 2019, 9, 606-612.	2.0	10
30	Terahertz Dynamic Aperture Imaging at Standoff Distances Using a Compressed Sensing Protocol. IEEE Transactions on Terahertz Science and Technology, 2019, 9, 364-372.	2.0	11
31	Laser-Ablated Silicon in the Frequency Range From 0.1 to 4.7 THz. IEEE Transactions on Terahertz Science and Technology, 2019, 9, 581-586.	2.0	3
32	Tunable Stokes Shift in Uniaxially Stressed Silicon with Shallow Donors. , 2019, , .		0
33	Gas Spectroscopy at 222 – 270 GHz Based on SiGe BiCMOS using a Multi-Pass Ring Cell. , 2019, , .		1
34	High-Resolution THz Spectroscopy with QCLs: From Lab to Space. , 2019, , .		1
35	Chemical Shift and Exchange Interaction Energy of the 1s States of Magnesium Donors in Silicon. The Possibility of Stimulated Emission. Semiconductors, 2019, 53, 1234-1237.	0.2	7
36	Stimulated Terahertz Emission of Bismuth Donors in Uniaxially Strained Silicon under Optical Intracenter Excitation. Semiconductors, 2019, 53, 1255-1257.	0.2	0

#	Article	IF	CITATIONS
37	Dynamics of infrared excitations in boron doped diamond. Diamond and Related Materials, 2019, 92, 259-265.	1.8	4
38	Analysis of Human Breath by Millimeter-Wave/Terahertz Spectroscopy. Sensors, 2019, 19, 2719.	2.1	60
39	Shallow donor complexes formed by pairing of double-donor magnesium with group-III acceptors in silicon. Physical Review B, 2019, 99, .	1.1	9
40	High-resolution, background-free spectroscopy of shallow-impurity transitions in semiconductors with a terahertz photomixer source. Applied Physics Letters, 2019, 114, 092103.	1.5	2
41	Transmitters and receivers in SiGe BiCMOS technology for sensitive gas spectroscopy at 222 - 270 GHz. AIP Advances, 2019, 9, .	0.6	25
42	High-resolution terahertz spectroscopy with quantum-cascade lasers. Journal of Applied Physics, 2019, 125, 151401.	1.1	31
43	Relaxation Times and Population Inversion of Excited States of Arsenic Donors in Germanium. JETP Letters, 2019, 110, 677-682.	0.4	12
44	Relaxation Times of Arsenic Excited Donor States in Germanium. , 2019, , .		0
45	15NH3 terahertz gas laser pumped by a mid-infrared quantum-cascade laser. , 2019, , .		1
46	Evenâ€Parity Excited States in Infrared Emission, Absorption, and Raman Scattering Spectra of Shallow Donor Centers in Silicon. Physica Status Solidi (B): Basic Research, 2019, 256, 1800514.	0.7	4
47	Wideband, high-resolution terahertz spectroscopy by light-induced frequency tuning of quantum-cascade lasers. Optics Express, 2019, 27, 5420.	1.7	14
48	Frequency and power stabilization of a terahertz quantum-cascade laser using near-infrared optical excitation. Optics Express, 2019, 27, 36846.	1.7	7
49	Laser-processed diffractive lenses for the frequency range of 47  THz. Optics Letters, 2019, 44, 1210.	1.7	16
50	Mask Responses for Single-Pixel Terahertz Imaging. Scientific Reports, 2018, 8, 4886.	1.6	21
51	Towards Breath Gas Analysis Based on Millimeter-Wave Molecular Spectroscopy. Frequenz, 2018, 72, 87-92.	0.6	6
52	Real-Time Molecular Spectroscopy through Self-Mixing in a Terahertz Quantum-Cascade Laser. , 2018, , .		0
53	Molecular spectroscopy with a terahertz quantum-cascade laser by illumination-induced frequency tuning. , 2018, , .		2
54	Relaxation of Coulomb States in Semiconductors Probed by FEL Radiation. EPJ Web of Conferences, 2018, 195, 07008.	0.1	0

#	Article	IF	CITATIONS
55	The upGREAT Dual Frequency Heterodyne Arrays for SOFIA. Journal of Astronomical Instrumentation, 2018, 07, .	0.8	69
56	Sensitive Millimeter-Wave/Terahertz Gas Spectroscopy Based on SiGe BiCMOS Technology. , 2018, , .		4
57	Mg-pair isoelectronic bound exciton identified by its isotopic fingerprint in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mi>Si</mml:mi><mml:mprescr /><mml:none></mml:none><mml:mn>28</mml:mn></mml:mprescr </mml:mmultiscripts>. Physical Review B, 2018, 98, .</mml:math 	ipta	6
58	Competing Inversion-Based Lasing and Raman Lasing in Doped Silicon. Physical Review X, 2018, 8, .	2.8	4
59	Detection of Volatile Organic Compounds in Exhaled Human Breath by Millimeter- Wave/Terahertz spectroscopy. , 2018, , .		4
60	Intrinsic frequency tuning of terahertz quantum-cascade lasers. Journal of Applied Physics, 2018, 123, .	1.1	7
61	Doppler-free spectroscopy with a terahertz quantum-cascade laser. Optics Express, 2018, 26, 6692.	1.7	21
62	Further investigations of the deep double donor magnesium in silicon. Physical Review B, 2018, 98, .	1.1	11
63	Radii of Rydberg states of isolated silicon donors. Physical Review B, 2018, 98, .	1.1	12
64	Gas Spectroscopy System for Breath Analysis at mm-wave/THz Using SiGe BiCMOS Circuits. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 1807-1818.	2.9	63
65	Dynamics of nonâ€equilibrium charge carriers in pâ€germanium doped by gallium. Physica Status Solidi (B): Basic Research, 2017, 254, 1600803.	0.7	8
66	Diffusion doping of silicon with magnesium. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700192.	0.8	17
67	Heterodyne Spectroscopy of Frequency Instabilities in Terahertz Quantum-Cascade Lasers Induced by Optical Feedback. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-6.	1.9	13
68	Real-time gas sensing based on optical feedback in a terahertz quantum-cascade laser. Optics Express, 2017, 25, 30203.	1.7	15
69	Gas spectroscopy system with transmitters and receivers in SiGe BiCMOS for 225-273 GHz. , 2017, , .		2
70	Terahertz absorption and emission upon the photoionization of acceptors in uniaxially stressed silicon. Semiconductors, 2016, 50, 1458-1462.	0.2	0
71	Fast continuous tuning of terahertz quantum-cascade lasers by rear-facet illumination. Applied Physics Letters, 2016, 108, .	1.5	30
72	Gas spectroscopy system at 245 and 500 GHz using transmitters and receivers in SiGe BiCMOS. , 2016, , .		6

4

#	Article	IF	CITATIONS
73	A compact gas spectroscopy sensor system based on a voltage-frequency-tuned 245 GHz SiGe transmitter and receiver. , 2016, , .		0
74	Gas Spectroscopy by Voltage-Frequency Tuning of a 245 GHz SiGe Transmitter and Receiver. IEEE Sensors Journal, 2016, 16, 8863-8864.	2.4	8
75	Sensor system in SiGe BiCMOS at 245 and 500 GHz for gas spectroscopy. , 2016, , .		4
76	Dynamics of nonequilibrium electrons on neutral center states of interstitial magnesium donors in silicon. Physical Review B, 2016, 94, .	1.1	9
77	Terahertz gas spectroscopy through self-mixing in a quantum-cascade laser. Applied Physics Letters, 2016, 109, .	1.5	24
78	High-spectral-resolution terahertz imaging with a quantum-cascade laser. Optics Express, 2016, 24, 13839.	1.7	24
79	Identification of Unknown Substances by Terahertz Spectroscopy and Multivariate Data Analysis. Journal of Infrared, Millimeter, and Terahertz Waves, 2016, 37, 175-188.	1.2	17
80	245-GHz Transmitter Array in SiGe BiCMOS for Gas Spectroscopy. IEEE Transactions on Terahertz Science and Technology, 2016, 6, 318-327.	2.0	40
81	Tunable 500ÂGHz sensor system in SiGe technology for gas spectroscopy. Electronics Letters, 2015, 51, 1345-1347.	0.5	13
82	Terahertz gas-sensors: Gas-phase spectroscopy and multivariate analysis for medical and security applications. , 2015, , .		4
83	First detection of the 63 <i>î¼</i> m atomic oxygen line in the thermosphere of Mars with GREAT/SOFIA. Astronomy and Astrophysics, 2015, 580, L10.	2.1	34
84	Terahertz gas-phase spectroscopy: chemometrics for security and medical applications. Analyst, The, 2015, 140, 213-222.	1.7	46
85	245 GHz SiGe sensor system for gas spectroscopy. International Journal of Microwave and Wireless Technologies, 2015, 7, 271-278.	1.5	20
86	4.7-THz Superconducting Hot Electron Bolometer Waveguide Mixer. IEEE Transactions on Terahertz Science and Technology, 2015, 5, 207-214.	2.0	101
87	Compressed Sensing in a Fully Non-Mechanical 350 GHz Imaging Setting. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36, 496-512.	1.2	27
88	Tunable 500ÂGHz transmitter array in SiGe technology for gas spectroscopy. Electronics Letters, 2015, 51, 257-259.	0.5	18
89	4.7-THz Local Oscillator for the GREAT Heterodyne Spectrometer on SOFIA. IEEE Transactions on Terahertz Science and Technology, 2015, 5, 539-545.	2.0	89

90 245 GHz transmitter and receiver in SiGe for gas spectroscopy. , 2014, , .

#	Article	IF	CITATIONS
91	Tunable 245ÂGHz transmitter and receiver in SiGe technology for gas spectroscopy. Electronics Letters, 2014, 50, 881-882.	0.5	27
92	Time-resolved electronic capture in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi>-type germanium doped with antimony. Physical Review B, 2014, 89, .</mml:math 	1.1	18
93	Terahertz Stimulated Emission from Silicon Doped by Hydrogenlike Acceptors. Physical Review X, 2014, 4, .	2.8	9
94	Characterizing the beam properties of terahertz quantum-cascade lasers. Journal of Infrared, Millimeter, and Terahertz Waves, 2014, 35, 686-698.	1.2	14
95	Photon assisted tunneling in pairs of silicon donors. Physical Review B, 2014, 89, .	1.1	5
96	High Resolution Terahertz Spectroscopy with Quantum Cascade Lasers. Journal of Infrared, Millimeter, and Terahertz Waves, 2013, 34, 325-341.	1.2	55
97	Fast 2-D and 3-D Terahertz Imaging With a Quantum-Cascade Laser and a Scanning Mirror. IEEE Transactions on Terahertz Science and Technology, 2013, 3, 617-624.	2.0	53
98	The physical principles of terahertz silicon lasers based on intracenter transitions. Physica Status Solidi (B): Basic Research, 2013, 250, 9-36.	0.7	34
99	Frequency modulation spectroscopy with a THz quantum-cascade laser. Optics Express, 2013, 21, 32199.	1.7	42
100	Quantum-cascade lasers as local oscillators for heterodyne spectrometers in the spectral range around 4.745 THz. Semiconductor Science and Technology, 2013, 28, 035011.	1.0	41
101	Si:P as a laboratory analogue for hydrogen on high magnetic field white dwarf stars. Nature Communications, 2013, 4, 1469.	5.8	50
102	lsotope effect on the lifetime of the 2 <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mi>p</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math> state in phosphorus-doped silicon. Physical Review B, 2013, 88, .	1.1	18
103	Possibility of THz donor lasing in electrically pumped silicon. , 2013, , .		0
104	Terahertz wavefront measurement with a Hartmann sensor. Applied Physics Letters, 2012, 101, .	1.5	13
105	Terahertz Techniques. Springer Series in Optical Sciences, 2012, , .	0.5	124
106	The ionized and hot gas in M17ÂSW. Astronomy and Astrophysics, 2012, 542, L13.	2.1	24
107	[¹² Cii] and [¹³ C ii] 158 <i>μ</i> m emission from NGC 2024: Large column de of ionized carbon. Astronomy and Astrophysics, 2012, 542, L16.	nsities 2.1	39
108	Optical Principles at Terahertz Frequencies. Springer Series in Optical Sciences, 2012, , 23-49.	0.5	0

#	Article	IF	CITATIONS
109	Optical Components. Springer Series in Optical Sciences, 2012, , 51-101.	0.5	1
110	Detectors. Springer Series in Optical Sciences, 2012, , 169-245.	0.5	1
111	Spectroscopic Methods. Springer Series in Optical Sciences, 2012, , 247-300.	0.5	0
112	Terahertz Imaging. Springer Series in Optical Sciences, 2012, , 301-340.	0.5	2
113	SOFIA observations of far-infrared hydroxyl emission toward classical ultracompact HII/OH maser regions. Astronomy and Astrophysics, 2012, 542, L8.	2.1	10
114	Multifrequency terahertz lasing from codoped silicon crystals. Applied Physics Letters, 2011, 98, .	1.5	14
115	Terahertz Spectroscopy: System and Sensitivity Considerations. IEEE Transactions on Terahertz Science and Technology, 2011, 1, 321-331.	2.0	31
116	Spin-orbit coupling effect on bismuth donor lasing in stressed silicon. Applied Physics Letters, 2011, 99,	1.5	5
117	Multi-channel terahertz grating spectrometer with quantum-cascade laser and microbolometer array. Applied Physics Letters, 2011, 99, .	1.5	21
118	Towards THz integrated photonics. Nature Photonics, 2010, 4, 503-504.	15.6	34
119	Submegahertz frequency stabilization of a terahertz quantum cascade laser to a molecular absorption line. Applied Physics Letters, 2010, 96, .	1.5	63
120	Influence of an electric field on the operation of terahertz intracenter silicon lasers. Journal of Applied Physics, 2010, 107, 033114.	1.1	3
121	A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler. Optics Express, 2010, 18, 10177.	1.7	85
122	Inhomogeneous broadening of phosphorus donor lines in the far-infrared spectra of single-crystalline SiGe. Physical Review B, 2010, 82, .	1.1	20
123	Using terahertz cascade lasers for determination of optical losses in active medium of silicon intracenter lasers. , 2010, , .		1
124	The rotational spectrum of the NH+ radical in its X 2Î and a Σ4â^' states. Journal of Chemical Physics, 200 131, 034311.)9 1:2	19
125	Stimulated terahertz emission due to electronic Raman scattering in silicon. Applied Physics Letters, 2009, 94, 171112.	1.5	11
126	Towards traceable radiometry in the terahertz region. Metrologia, 2009, 46, S160-S164.	0.6	57

#	Article	IF	CITATIONS
127	Optimizing the Operation of Terahertz Silicon Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 925-932.	1.9	4
128	Raman lasers due to scattering on donor electronic resonances in silicon. Physica B: Condensed Matter, 2009, 404, 4661-4663.	1.3	4
129	Terahertz lasing from silicon by infrared Raman scattering on bismuth centers. Applied Physics Letters, 2009, 95, .	1.5	8
130	Multi-crystalline silicon as active medium for terahertz intracenter lasers. Physica B: Condensed Matter, 2008, 403, 535-538.	1.3	1
131	Terahertz Heterodyne Receivers. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 378-391.	1.9	160
132	Terahertz heterodyne receiver with quantum cascade laser and hot electron bolometer mixer in a pulse tube cooler. Applied Physics Letters, 2008, 93, 141108.	1.5	71
133	Evidence of noncascade intracenter electron relaxation in shallow donor centers in silicon. Physical Review B, 2008, 78, .	1.1	12
134	Terahertz Raman laser based on silicon doped with phosphorus. Applied Physics Letters, 2008, 92, .	1.5	16
135	Low-threshold terahertz Si:As laser. Applied Physics Letters, 2007, 90, 141109.	1.5	19
136	Terahertz gain on shallow donor transitions in silicon. Journal of Applied Physics, 2007, 102, .	1.1	16
137	Terahertz Performance of Integrated Lens Antennas With a Hot-Electron Bolometer. IEEE Transactions on Microwave Theory and Techniques, 2007, 55, 239-247.	2.9	106
138	Influence of uniaxial stress on stimulated terahertz emission from phosphor and antimony donors in silicon. Applied Physics Letters, 2007, 90, 051101.	1.5	17
139	Stimulated Terahertz Stokes Emission of Silicon Crystals Doped with Antimony Donors. Physical Review Letters, 2006, 96, 037404.	2.9	57
140	High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser. Applied Physics Letters, 2006, 89, 061115.	1.5	141
141	High Resolution Gas Phase Spectroscopy with a Quantum Cascade Laser at 2.5 THz. , 2006, , .		2
142	Frequency tunability of the terahertz silicon laser by a magnetic field. Applied Physics Letters, 2006, 89, 021108.	1.5	6
143	Dâ^' centers in intracenter Si:P lasers. Journal of Applied Physics, 2005, 97, 113708.	1.1	12
144	Terahertz lasers based on germanium and silicon. Semiconductor Science and Technology, 2005, 20, S211-S221.	1.0	105

#	Article	IF	CITATIONS
145	Terahertz quantum cascade laser as local oscillator in a heterodyne receiver. Optics Express, 2005, 13, 5890.	1.7	156
146	The development of terahertz superconducting hot-electron bolometric mixers. Superconductor Science and Technology, 2004, 17, S436-S439.	1.8	4
147	Nonequilibrium electron distribution in terahertz intracentre silicon lasers. Semiconductor Science and Technology, 2004, 19, S465-S468.	1.0	10
148	Stimulated terahertz emission from arsenic donors in silicon. Applied Physics Letters, 2004, 84, 3600-3602.	1.5	41
149	Laser transitions under resonant optical pumping of donor centres in Si:P. Applied Physics B: Lasers and Optics, 2003, 76, 613-616.	1.1	13
150	Optically pumped terahertz semiconductor bulk lasers. Physica Status Solidi (B): Basic Research, 2003, 235, 126-134.	0.7	19
151	Terahertz Silicon Lasers. , 2003, , 331-340.		1
152	Far-infrared stimulated emission from optically excited bismuth donors in silicon. Applied Physics Letters, 2002, 80, 4717-4719.	1.5	55
153	Terahertz optically pumped Si:Sb laser. Journal of Applied Physics, 2002, 92, 5632-5634.	1.1	37
154	Stimulated terahertz emission from group-V donors in silicon under intracenter photoexcitation. Applied Physics Letters, 2002, 80, 3512-3514.	1.5	42
155	On the effect of IF power nulls in Schottky diode harmonic mixers. IEEE Transactions on Microwave Theory and Techniques, 2002, 50, 134-142.	2.9	7
156	Terahertz Emission Spectra of Optically Pumped Silicon Lasers. Physica Status Solidi (B): Basic Research, 2002, 233, 191-196.	0.7	21
157	2.5 THz heterodyne receiver with NbN hot-electron-bolometer mixer. Physica C: Superconductivity and Its Applications, 2002, 372-376, 448-453.	0.6	16
158	Influence of group II and III shallow acceptors on the gain of p-Ge lasers. Physica B: Condensed Matter, 2001, 302-303, 334-341.	1.3	3
159	FIR lasing based on group V donor transitions in silicon. Physica B: Condensed Matter, 2001, 302-303, 342-348.	1.3	9
160	Terahertz emission from silicon doped by shallow impurities. Physica B: Condensed Matter, 2001, 308-310, 232-235.	1.3	13
161	Parylene anti-reflection coating of a quasi-optical hot-electron-bolometric mixer at terahertz frequencies. Infrared Physics and Technology, 2001, 42, 41-47.	1.3	61
162	Stimulated Emission from Donor Transitions in Silicon. Physical Review Letters, 2000, 84, 5220-5223.	2.9	153

#	Article	IF	CITATIONS
163	Noise temperature of an NbN hot-electron bolometric mixer at frequencies from 0.7 THz to 5.2 THz. Superconductor Science and Technology, 1999, 12, 748-750.	1.8	6
164	Population inversion and far-infrared emission from optically pumped silicon. Applied Physics Letters, 1999, 74, 2655-2657.	1.5	27
165	THZ silicon lasers based on donor center transitions. , 0, , .		0