
Wenchang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1622783/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cadmium disrupts mouse embryonic stem cell differentiation into ovarian granulosa cells through epigenetic mechanisms. Ecotoxicology and Environmental Safety, 2022, 235, 113431.	6.0	5
2	Prenatal Poly I:C Challenge Affects Behaviors and Neurotransmission via Elevated Neuroinflammation Responses in Female Juvenile Rats. International Journal of Neuropsychopharmacology, 2022, 25, 160-171.	2.1	18
3	Maternal genetic effect on apoptosis of ovarian granulosa cells induced by cadmium. Food and Chemical Toxicology, 2022, 165, 113079.	3.6	7
4	The role of miRNAs in regulating the effect of prenatal cadmium exposure on ovarian granulosa cells in a transgenerational manner in female rats. Food and Chemical Toxicology, 2021, 150, 112062.	3.6	17
5	C-myc promotes miR-92a-2-5p transcription in rat ovarian granulosa cells after cadmium exposure. Toxicology and Applied Pharmacology, 2021, 421, 115536.	2.8	16
6	Effects of cadmium on organ function, gut microbiota and its metabolomics profile in adolescent rats. Ecotoxicology and Environmental Safety, 2021, 222, 112501.	6.0	24
7	The role of microRNAs in regulating cadmium-induced apoptosis by targeting Bcl-2 in IEC-6 cells. Toxicology and Applied Pharmacology, 2021, 432, 115737.	2.8	6
8	Continuous gibberellin A3 exposure from weaning to sexual maturity induces ovarian granulosa cell apoptosis by activating Fas-mediated death receptor signaling pathways and changing methylation patterns on caspase-3 gene promoters. Toxicology Letters, 2020, 319, 175-186.	0.8	15
9	Cadmium exposure during prenatal development causes testosterone disruption in multigeneration via SF-1 signaling in rats. Food and Chemical Toxicology, 2020, 135, 110897.	3.6	23
10	2,5-Hexanedione influences primordial follicular development in cultured neonatal mouse ovaries by interfering with the PI3K signaling pathway via miR-214-3p. Toxicology and Applied Pharmacology, 2020, 409, 115335.	2.8	4
11	Using Employment Data From a Medical University to Examine the Current Occupation Situation of Master's Graduates in Public Health and Preventive Medicine in China. Frontiers in Public Health, 2020, 8, 508109.	2.7	8
12	Characteristics of COVID-2019 in areas epidemic from imported cases. International Journal of Public Health, 2020, 65, 741-746.	2.3	3
13	Cadmium exposure during prenatal development causes progesterone disruptors in multiple generations via steroidogenic enzymes in rat ovarian granulosa cells. Ecotoxicology and Environmental Safety, 2020, 201, 110765.	6.0	15
14	MicroRNA-204-5p regulates apoptosis by targeting Bcl2 in rat ovarian granulosa cells exposed to cadmiumâ€. Biology of Reproduction, 2020, 103, 608-619.	2.7	14
15	Anti-Müllerian hormone participates in ovarian granulosa cell damage due to cadmium exposure by negatively regulating stem cell factor. Reproductive Toxicology, 2020, 93, 54-60.	2.9	8
16	Dynamic comparison of gut microbiota of mice infected with Shigella�flexneri via two different infective routes. Experimental and Therapeutic Medicine, 2020, 19, 2273-2281.	1.8	7
17	Cadmium induces ovarian granulosa cell damage by activating PERK-eIF2α-ATF4 through endoplasmic reticulum stress. Biology of Reproduction, 2019, 100, 292-299.	2.7	27
18	The Increase of ROS Caused by the Interference of DEHP with JNK/p38/p53 Pathway as the Reason for Hepatotoxicity. International Journal of Environmental Research and Public Health, 2019, 16, 356.	2.6	34

WENCHANG ZHANG

#	Article	IF	CITATIONS
19	High copper levels in follicular fluid affect follicle development in polycystic ovary syndrome patients: Population-based and in vitro studies. Toxicology and Applied Pharmacology, 2019, 365, 101-111.	2.8	34
20	Methods for Evaluation of Ovarian Granulosa Cells with Exposure to Nanoparticles. Methods in Molecular Biology, 2019, 1894, 73-81.	0.9	5
21	Di(2â€ethylhexyl) phthalate (DEHP) influences follicular development in mice between the weaning period and maturity by interfering with ovarian development factors and microRNAs. Environmental Toxicology, 2018, 33, 535-544.	4.0	39
22	Activity of MPF and expression of its related genes in mouse MI oocytes exposed to cadmium. Food and Chemical Toxicology, 2018, 112, 332-341.	3.6	15
23	Effect of cadmium on kitl preâ€mRNA alternative splicing in murine ovarian granulosa cells and its associated regulation by miRNAs. Journal of Applied Toxicology, 2018, 38, 227-239.	2.8	25
24	Waist Circumference Coupled with Either HDL-C or TG Can Be Used as a Diagnostic Marker for Metabolic Syndrome in Chinese Women with Polycystic Ovary Syndrome. International Journal of Endocrinology, 2018, 2018, 1-9.	1.5	2
25	Changes in DNA Methylation of Oocytes and Granulosa Cells Assessed by HELMET during Folliculogenesis in Mouse Ovary. Acta Histochemica Et Cytochemica, 2018, 51, 93-100.	1.6	14
26	Continuous soy isoflavones exposure from weaning to maturity induces downregulation of ovarian steroidogenic factor 1 gene expression and corresponding changes in DNA methylation pattern. Toxicology Letters, 2017, 281, 175-183.	0.8	12
27	Cadmium exposure in newborn rats ovary induces developmental disorders of primordial follicles and the differential expression of SCF/c-kit gene. Toxicology Letters, 2017, 280, 20-28.	0.8	27
28	Gestational N-hexane inhalation alters the expression of genes related to ovarian hormone production and DNA methylation states in adult female F1 rat offspring. Toxicology Letters, 2015, 239, 141-151.	0.8	14
29	Nâ€hexane inhalation during pregnancy alters DNA promoter methylation in the ovarian granulosa cells of rat offspring. Journal of Applied Toxicology, 2014, 34, 841-856.	2.8	11
30	Prepubertal bisphenol A exposure interferes with ovarian follicle development and its relevant gene expression. Reproductive Toxicology, 2014, 44, 33-40.	2.9	55
31	Continuous cadmium exposure from weaning to maturity induces downregulation of ovarian follicle development-related SCF/c-kit gene expression and the corresponding changes of DNA methylation/microRNA pattern. Toxicology Letters, 2014, 225, 367-377.	0.8	49
32	Soy isoflavones administered to rats from weaning until sexual maturity affect ovarian follicle development by inducing apoptosis. Food and Chemical Toxicology, 2014, 72, 51-60.	3.6	17
33	Apoptosis of rat ovarian granulosa cells by 2,5â€hexanedione <i>in vitro</i> and its relevant gene expression. Journal of Applied Toxicology, 2013, 33, 661-669.	2.8	13
34	2,5-Hexanedione induces human ovarian granulosa cell apoptosis through BCL-2, BAX, and CASPASE-3 signaling pathways. Archives of Toxicology, 2012, 86, 205-215.	4.2	80
35	The impact of n-hexane on the secretion of mouse estrogen and progesterone. Advances in Bioscience and Biotechnology (Print), 2011, 02, 429-433.	0.7	3
36	Cadmium exerts toxic effects on ovarian steroid hormone release in rats. Toxicology Letters, 2008, 182, 18-23.	0.8	75

#	Article	IF	CITATIONS
37	Effect and mechanism of cadmium on the progesterone synthesis of ovaries. Toxicology, 2007, 239, 204-212.	4.2	46
38	Comparative studies on the increase of uterine weight and related mechanisms of cadmium and p-nonylphenol. Toxicology, 2007, 241, 84-91.	4.2	44