Alok Sinha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1622384/publications.pdf

Version: 2024-02-01

		430874	361022
62	1,329	18	35
papers	citations	h-index	g-index
62	62	62	1500
62	62	62	1509
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Polycyclic aromatic hydrocarbons (PAHs) concentration levels, pattern, source identification and soil toxicity assessment in urban traffic soil of Dhanbad, India. Science of the Total Environment, 2016, 545-546, 353-360.	8.0	201
2	A review on synthesis, characterization, and applications of nano zero valent iron (nZVI) for environmental remediation. Critical Reviews in Environmental Science and Technology, 2016, 46, 443-466.	12.8	193
3	Removal of ciprofloxacin using modified advanced oxidation processes: Kinetics, pathways and process optimization. Journal of Cleaner Production, 2018, 171, 1203-1214.	9.3	149
4	Human health risk analysis from disinfection by-products (DBPs) in drinking and bathing water of some Indian cities. Journal of Environmental Health Science & Engineering, 2014, 12, 73.	3.0	58
5	Public health risk assessment with bioaccessibility considerations for soil PAHs at oil refinery vicinity areas in India. Science of the Total Environment, 2018, 616-617, 1477-1484.	8.0	48
6	Health risk assessment and source study of PAHs from roadside soil dust of a heavy mining area in India. Archives of Environmental and Occupational Health, 2019, 74, 252-262.	1.4	37
7	Exploring Artificial Intelligence Techniques for Groundwater Quality Assessment. Water (Switzerland), 2021, 13, 1172.	2.7	37
8	Biodegradation of anthracene by a newly isolated bacterial strain, <i>Bacillus thuringiensis </i> AT.ISM.1, isolated from a fly ash deposition site. Letters in Applied Microbiology, 2017, 65, 327-334.	2.2	35
9	Recent developments in surface modification of nano zero-valent iron (nZVI): Remediation, toxicity and environmental impacts. Environmental Nanotechnology, Monitoring and Management, 2020, 14, 100344.	2.9	31
10	Review on Treatment of Acid Mine Drainage with Waste Materials: A Novel Approach. Global Nest Journal, 2018, 20, 512-528.	0.1	31
11	Cancer Risk Assessment of Polycyclic Aromatic Hydrocarbons in the Soils and Sediments of India: A Meta-Analysis. Environmental Management, 2017, 60, 784-795.	2.7	30
12	Estimation of decrease in cancer risk by biodegradation of PAHs content from an urban traffic soil. Environmental Science and Pollution Research, 2017, 24, 10373-10380.	5.3	29
13	Dimensionally stable anode (Ti/RuO2) mediated electro-oxidation and multi-response optimization study for remediation of coke-oven wastewater. Journal of Environmental Chemical Engineering, 2021, 9, 105025.	6.7	29
14	Role of Microorganisms in Permeable Reactive Bio-Barriers (PRBBs) for Environmental Clean-Up: A Review. Global Nest Journal, 2018, 20, 269-280.	0.1	24
15	Investigation and mapping of fluoride-endemic areas and associated health risk—A case study of Agra, Uttar Pradesh, India. Human and Ecological Risk Assessment (HERA), 2017, 23, 590-604.	3.4	23
16	Fluoride contamination in Gharbar Village of Dhanbad District, Jharkhand, India: source identification and management. Arabian Journal of Geosciences, 2017, 10, 1.	1.3	22
17	Assessment of graphite electrode on the removal of anticancer drug cytarabine via indirect electrochemical oxidation process: Kinetics & Electrochemical oxidati	8.2	22
18	Anaerobic hybrid membrane bioreactor for treatment of synthetic leachate: Impact of organic loading rate and sludge fractions on membrane fouling. Waste Management, 2020, 108, 41-50.	7.4	22

#	Article	IF	Citations
19	Biofilm development of Bacillus thuringiensis on MWCNT buckypaper: Adsorption-synergic biodegradation of phenanthrene. Ecotoxicology and Environmental Safety, 2018, 157, 327-334.	6.0	21
20	Profiling and Health Risk Assessment of PAHs Content in Tandoori and Tawa Bread from India. Polycyclic Aromatic Compounds, 2020, 40, 21-32.	2.6	21
21	Performance evaluation and substrate removal kinetics in an up-flow anaerobic hybrid membrane bioreactor treating simulated high-strength wastewater. Environmental Technology (United) Tj ETQq1 1 0.7843	14 2 gBT /O	ve il ock 10 T
22	Health risk assessment due to fluoride exposure from groundwater in rural areas of Agra, India: Monte Carlo simulation. International Journal of Environmental Science and Technology, 2021, 18, 3665-3676.	3.5	18
23	Interaction of 2,4,6-trichlorophenol with high carbon iron filings: Reaction and sorption mechanisms. Journal of Hazardous Materials, 2009, 164, 301-309.	12.4	16
24	Health Risk Assessment from Polycyclic Aromatic Hydrocarbons (PAHs) Present in Dietary Components: A Meta-analysis on a Global Scale. Polycyclic Aromatic Compounds, 2020, 40, 850-861.	2.6	16
25	Dehalogenation of 2-Chloronapthalene by Cast Iron. Water, Air, and Soil Pollution, 2006, 172, 375-390.	2.4	15
26	Appraisal of groundwater arsenic on opposite banks of River Ganges, West Bengal, India, and quantification of cancer risk using Monte Carlo simulations. Environmental Science and Pollution Research, 2023, 30, 25205-25225.	5.3	14
27	High carbon iron filings (HCIF) and metal reducing bacteria (Serratia sp.) co-assisted Cr (VI) reduction: Kinetics, mechanism and longevity. Journal of Environmental Management, 2019, 236, 388-395.	7.8	13
28	Development of model for prediction of Leachate Pollution Index (LPI) in absence of leachate parameters. Waste Management, 2017, 63, 327-336.	7.4	12
29	Interaction of 2-chloronaphthalene with high carbon iron filings (HCIF): Adsorption, dehalogenation and mass transfer limitations. Journal of Colloid and Interface Science, 2007, 314, 552-561.	9.4	11
30	Use of Basic Oxygen Furnace (BOF) Steel Slag for Acid Mine Drainage Treatment: A Laboratory Study. Mine Water and the Environment, 2019, 38, 517-527.	2.0	10
31	Polycyclic Aromatic Hydrocarbons (PAHs) Pollution Generated from Coal-Fired Thermal Power Plants: Formation Mechanism, Characterization, and Profiling. Energy, Environment, and Sustainability, 2019, , 73-90.	1.0	10
32	A Review on Membrane Fouling in Membrane Bioreactors: Control and Mitigation. Energy, Environment, and Sustainability, 2018, , 281-315.	1.0	8
33	Impact of Ammonia Nitrogen on COD Removal Efficiency in Anaerobic Hybrid Membrane Bioreactor Treating Synthetic Leachate. International Journal of Environmental Research, 2019, 13, 59-65.	2.3	8
34	A Durability Study of Jute Geotextile Treated with Bitumen Emulsion. Journal of Natural Fibers, 2021, 18, 400-418.	3.1	8
35	Interaction of Chloroethanes and Chloroethenes with Unrusted and Rusted High Carbon Iron Filings. Environmental Engineering Science, 2009, 26, 61-70.	1.6	7
36	2-Chloronaphthalene Dehalogenation by High-Carbon Iron Filings: Formation of Corrosion Products on High-Carbon Iron Filings Surface. Environmental Engineering Science, 2011, 28, 701-710.	1.6	7

#	Article	IF	CITATIONS
37	Modeling of 2-chloronaphthalene interaction with high carbon iron filings (HCIF) in semi-batch and continuous systems. Environmental Science and Pollution Research, 2014, 21, 10442-10452.	5.3	7
38	Biphasic reduction model for predicting the impacts of dye-bath constituents on the reduction of tris-azo dye Direct Green-1 by zero valent iron (Fe 0). Journal of Environmental Sciences, 2017, 52, 160-169.	6.1	7
39	Modification, characterization and investigations of key factors controlling the transport of modified nano zero-valent iron (nZVI) in porous media. Environmental Technology (United Kingdom), 2019, 40, 1543-1556.	2.2	7
40	Assessment of <i>Serratia</i> sp. isolated from iron ore mine in hexavalent chromium reduction: kinetics, fate and variation in cellular morphology. Environmental Technology (United Kingdom), 2020, 41, 1117-1126.	2.2	7
41	Effect of Glucose Cometabolism on Biodegradation of Gabapentin (an Anticonvulsant Drug) by Gram-Positive Bacteria Micrococcus luteus N.ISM.1. Applied Biochemistry and Microbiology, 2020, 56, 433-440.	0.9	6
42	Phytoremediation of chromium(VI)-laden waste by Eichhornia crassipes. International Journal of Environmental Technology and Management, 2011, 14, 33.	0.2	5
43	Comparative Study for Reduction of Hexavalent Chromium by High Carbon Iron Filings and Electrolytic Iron: Mass Transfer Limitations. Asian Journal of Chemistry, 2015, 27, 1398-1402.	0.3	4
44	Zero valent iron-mediated rapid removal of bis-azo dye in solution amended with dyebath additives: Biphasic kinetics and modelling. Korean Journal of Chemical Engineering, 2016, 33, 3281-3288.	2.7	4
45	Reductive transformation and enhancement in biodegradability of mono-azo dye by high carbon iron filings (HCIF). Desalination and Water Treatment, 2016, 57, 3205-3217.	1.0	4
46	Reductive dehalogenation of endosulfan by cast iron: Kinetics, pathways and modeling. Chemosphere, 2016, 150, 772-780.	8.2	3
47	Mononuclear metal (II) complexes of a Bis(organoamido)phosphate ligand with antimicrobial activities against <i>Escherichia coli</i> . Applied Organometallic Chemistry, 2017, 31, e3821.	3.5	3
48	Assessment of hazard on human health and aquatic life in acid mine drainage treated with novel technique. Human and Ecological Risk Assessment (HERA), 2019, 25, 1925-1941.	3.4	3
49	Performance evaluation and organic mass balance for treatment of high strength wastewater by anaerobic hybrid membrane bioreactor. Environmental Progress and Sustainable Energy, 2020, 39, e13311.	2.3	3
50	Performance enhancement and optimization of the anammox process with the addition of iron. Environmental Technology (United Kingdom), 2021, 42, 4158-4169.	2.2	3
51	Health risk assessment due to fluoride contamination in groundwater of Bichpuri, Agra, India: a case study. Modeling Earth Systems and Environment, 2022, 8, 299-307.	3.4	3
52	Effective scrap iron particles (SIP) pre-treatment for complete mineralization of benzidine based azo dye effluent. Arabian Journal of Chemistry, 2020, 13, 134-145.	4.9	2
53	Discussion on the technical note entitled, "public health risk assessment following exposure to PAH-contaminated soils - specific considerations for bioaccessibility and other exposure parameters― Science of the Total Environment, 2019, 656, 1448-1451.	8.0	1
54	A Study on Different Bioremediation Approaches to Hexavalent Chromium. Energy, Environment, and Sustainability, 2021, , 57-74.	1.0	1

#	Article	IF	CITATIONS
55	Impact Assessment of Mixed Liquor Suspended Solids from Polyurethane Media Effluent on Ceramic Membrane Fouling in Anaerobic Hybrid Membrane Bioreactor. Journal of Environmental Engineering, ASCE, 2022, 148, .	1.4	1
56	A mathematical approach to evaluate the extent of groundwater contamination using polynomial approximation. Water Science and Technology: Water Supply, 2022, 22, 6070-6082.	2.1	1
57	Impacts of dyebath auxiliaries on the reductive discoloration of Acid Orange 7 dye by high-carbon iron filings. Water Science and Technology, 2016, 74, 1217-1226.	2.5	O
58	Modeling the impacts of corrosion product formation on simultaneous sorption and reductive dehalogenation of organochlorine pesticide aldrin by high carbon iron filings (HCIF). Desalination and Water Treatment, 2016, 57, 7155-7165.	1.0	0
59	Modeling cometabolism of hexavalent chromium by iron reducing bacteria in tertiary substrate system. Scientific Reports, 2021, 11, 10864.	3.3	O
60	Degradation of Heptachlor by High-Carbon Iron Filings (HCIF). Water Science and Technology Library, 2018, , 217-222.	0.3	0
61	ABATEMENT OF ANTICANCER DRUGS VIA ELECTROCHEMICAL OXIDATION PROCESS: A REVIEW. , 2020, , 1-4.		0
62	Performance of jute geotextile treated with bitumen emulsion for subgrade improvement. Arabian Journal of Geosciences, 2022, 15 , .	1.3	0