Silvia Guatimosim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1622375/publications.pdf

Version: 2024-02-01

81900 71685 6,192 130 39 76 citations g-index h-index papers 136 136 136 7485 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature, 2003, 421, 634-639.	27.8	926
2	FKBP12.6 Deficiency and Defective Calcium Release Channel (Ryanodine Receptor) Function Linked to Exercise-Induced Sudden Cardiac Death. Cell, 2003, 113, 829-840.	28.9	683
3	Calmodulin kinase II inhibition protects against structural heart disease. Nature Medicine, 2005, 11, 409-417.	30.7	526
4	Protein Kinase A Phosphorylation of the Cardiac Calcium Release Channel (Ryanodine Receptor) in Normal and Failing Hearts. Journal of Biological Chemistry, 2003, 278, 444-453.	3.4	188
5	Heart Failure After Myocardial Infarction. Circulation, 2001, 104, 688-693.	1.6	180
6	Molecular Mechanisms Involved in the Angiotensin-(1-7)/Mas Signaling Pathway in Cardiomyocytes. Hypertension, 2008, 52, 542-548.	2.7	147
7	Angiotensin-(1-7) Prevents Cardiomyocyte Pathological Remodeling Through a Nitric Oxide/Guanosine 3′,5′-Cyclic Monophosphate–Dependent Pathway. Hypertension, 2010, 55, 153-160.	2.7	112
8	The Ca2+ leak paradox and "rogue ryanodine receptors― SR Ca2+ efflux theory and practice. Progress in Biophysics and Molecular Biology, 2006, 90, 172-185.	2.9	110
9	Exercise reestablishes autophagic flux and mitochondrial quality control in heart failure. Autophagy, 2017, 13, 1304-1317.	9.1	110
10	Analysis of Cardiac Myocyte Maturation Using CASAAV, a Platform for Rapid Dissection of Cardiac Myocyte Gene Function In Vivo. Circulation Research, 2017, 120, 1874-1888.	4.5	106
11	Succinate causes pathological cardiomyocyte hypertrophy through GPR91 activation. Cell Communication and Signaling, 2014, 12, 78.	6.5	105
12	Local Ca2+ Signaling and EC Coupling in Heart: Ca2+ Sparks and the Regulation of the [Ca2+]i Transient. Journal of Molecular and Cellular Cardiology, 2002, 34, 941-950.	1.9	99
13	Mitochondrial Cardiomyopathy Caused by Elevated Reactive Oxygen Species and Impaired Cardiomyocyte Proliferation. Circulation Research, 2018, 122, 74-87.	4.5	89
14	Cardiomyocyteâ€secreted acetylcholine is required for maintenance of homeostasis in the heart. FASEB Journal, 2013, 27, 5072-5082.	0.5	85
15	Non-neuronal cholinergic machinery present in cardiomyocytes offsets hypertrophic signals. Journal of Molecular and Cellular Cardiology, 2012, 53, 206-216.	1.9	82
16	Gold nanoparticles and their applications in biomedicine. Future Virology, 2016, 11, 293-309.	1.8	82
17	Highly efficient siRNA delivery system into human and murine cells using single-wall carbon nanotubes. Nanotechnology, 2010, 21, 385101.	2.6	77
18	Nucleoplasmic calcium signaling and cell proliferation: calcium signaling in the nucleus. Cell Communication and Signaling, 2013, 11, 14.	6.5	73

#	Article	lF	CITATIONS
19	Nuclear Ca2+ regulates cardiomyocyte function. Cell Calcium, 2008, 44, 230-242.	2.4	71
20	Carbon nanotube interaction with extracellular matrix proteins producing scaffolds for tissue engineering. International Journal of Nanomedicine, 2012, 7, 4511.	6.7	71
21	Influence of spontaneous calcium events on cell-cycle progression in embryonal carcinoma and adult stem cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 246-260.	4.1	70
22	Dysautonomia Due to Reduced Cholinergic Neurotransmission Causes Cardiac Remodeling and Heart Failure. Molecular and Cellular Biology, 2010, 30, 1746-1756.	2.3	70
23	Molecular identification of a TTX-sensitive Ca ²⁺ current. American Journal of Physiology - Cell Physiology, 2001, 280, C1327-C1339.	4.6	64
24	Succinate modulates Ca2+ transient and cardiomyocyte viability through PKA-dependent pathway. Cell Calcium, 2010, 47, 37-46.	2.4	64
25	Cholinergic Activity as a New Target in Diseases of the Heart. Molecular Medicine, 2014, 20, 527-537.	4.4	64
26	Paradoxical Cellular Ca 2+ Signaling in Severe but Compensated Canine Left Ventricular Hypertrophy. Circulation Research, 2005, 97, 457-464.	4.5	63
27	Hierarchical and stage-specific regulation of murine cardiomyocyte maturation by serum response factor. Nature Communications, 2018, 9, 3837.	12.8	63
28	Cardiac antiâ€remodelling effect of aerobic training is associated with a reduction in the calcineurin/NFAT signalling pathway in heart failure mice. Journal of Physiology, 2009, 587, 3899-3910.	2.9	59
29	FKBP12 Is a Critical Regulator of the Heart Rhythm and the Cardiac Voltage-Gated Sodium Current in Mice. Circulation Research, 2011, 108, 1042-1052.	4.5	57
30	Alamandine acts via MrgD to induce AMPK/NO activation against ANG II hypertrophy in cardiomyocytes. American Journal of Physiology - Cell Physiology, 2018, 314, C702-C711.	4.6	55
31	Calcium Biology of the Transverse Tubules in Heart. Annals of the New York Academy of Sciences, 2005, 1047, 99-111.	3.8	54
32	Effects of PP1/PP2A inhibitor calyculin A on the E-C coupling cascade in murine ventricular myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H38-H48.	3.2	53
33	Imaging Calcium Sparks in Cardiac Myocytes. Methods in Molecular Biology, 2011, 689, 205-214.	0.9	51
34	Role of SOCS2 in Modulating Heart Damage and Function in a Murine Model of Acute Chagas Disease. American Journal of Pathology, 2012, 181, 130-140.	3.8	50
35	Attenuation of isoproterenol-induced cardiac fibrosis in transgenic rats harboring an angiotensin-(1-7)-producing fusion protein in the heart. Therapeutic Advances in Cardiovascular Disease, 2010, 4, 83-96.	2.1	46
36	Angiotensin-(1-7)-Mediated Signaling in Cardiomyocytes. International Journal of Hypertension, 2012, 2012, 1-8.	1.3	45

#	Article	IF	CITATIONS
37	Structure–function studies of Tityus serrulatus Hypotensin-I (TsHpt-I): A new agonist of B2 kinin receptor. Toxicon, 2010, 56, 1162-1171.	1.6	43
38	Cholinergic Signaling Exerts Protective Effects in Models of Sympathetic Hyperactivity-Induced Cardiac Dysfunction. PLoS ONE, 2014, 9, e100179.	2.5	43
39	Intracellular mechanisms of specific \hat{l}^2 -adrenoceptor antagonists involved in improved cardiac function and survival in a genetic model of heart failure. Journal of Molecular and Cellular Cardiology, 2008, 45, 240-249.	1.9	42
40	Twenty Years of Calcium Imaging: Cell Physiology to Dye For. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2005, 5, 112-127.	3.4	42
41	Nuclear inositol 1,4,5-trisphosphate is a necessary and conserved signal for the induction of both pathological and physiological cardiomyocyte hypertrophy. Journal of Molecular and Cellular Cardiology, 2012, 53, 475-486.	1.9	39
42	Cardiac acetylcholine inhibits ventricular remodeling and dysfunction under pathologic conditions. FASEB Journal, 2016, 30, 688-701.	0.5	39
43	Using the Fluorescent Styryl Dye FM1-43 to Visualize Synaptic Vesicles Exocytosis and Endocytosis in Motor Nerve Terminals. Methods in Molecular Biology, 2011, 689, 137-148.	0.9	39
44	Exercise capacity is related to calcium transients in ventricular cardiomyocytes. Journal of Applied Physiology, 2009, 107, 593-598.	2.5	35
45	Genetic deletion of the alamandine receptor MRGD leads to dilated cardiomyopathy in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H123-H133.	3.2	35
46	Myrtenol protects against myocardial ischemia-reperfusion injury through antioxidant and anti-apoptotic dependent mechanisms. Food and Chemical Toxicology, 2018, 111, 557-566.	3.6	34
47	Scale/Topography of Substrates Surface Resembling Extracellular Matrix for Tissue Engineering. Journal of Biomedical Nanotechnology, 2014, 10, 1157-1193.	1.1	31
48	Functional Cross-Talk Between Aldosterone and Angiotensin-(1-7) in Ventricular Myocytes. Hypertension, 2013, 61, 425-430.	2.7	30
49	Abolition of reperfusion-induced arrhythmias in hearts from thiamine-deficient rats. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H394-H401.	3.2	29
50	The cardiac expression of Mas receptor is responsive to different physiological and pathological stimuli. Peptides, 2012, 35, 196-201.	2.4	29
51	Severe Calorie Restriction Reduces Cardiometabolic Risk Factors and Protects Rat Hearts from Ischemia/Reperfusion Injury. Frontiers in Physiology, 2016, 7, 106.	2.8	29
52	Integrative Effect of Carvedilol and Aerobic Exercise Training Therapies on Improving Cardiac Contractility and Remodeling in Heart Failure Mice. PLoS ONE, 2013, 8, e62452.	2.5	29
53	Cardiotoxic effects of Loxosceles intermedia spider venom and the recombinant venom toxin rLiD1. Toxicon, 2010, 56, 1426-1435.	1.6	28
54	Cardioprotective Action of Ginkgo biloba Extract against Sustained \hat{l}^2 -Adrenergic Stimulation Occurs via Activation of M2/NO Pathway. Frontiers in Pharmacology, 2017, 8, 220.	3.5	28

#	Article	IF	CITATIONS
55	Alamandine attenuates arterial remodelling induced by transverse aortic constriction in mice. Clinical Science, 2019, 133, 629-643.	4.3	27
56	Kinin B1 receptor participates in the control of cardiac function in mice. Life Sciences, 2007, 81, 814-822.	4.3	26
57	Beneficial Effects of Angiotensin-(1–7) Against Deoxycorticosterone Acetate–Induced Diastolic Dysfunction Occur Independently of Changes in Blood Pressure. Hypertension, 2015, 66, 389-395.	2.7	26
58	Vagus nerve regulates the phagocytic and secretory activity of resident macrophages in the liver. Brain, Behavior, and Immunity, 2019, 81, 444-454.	4.1	26
59	Calcium overload-induced arrhythmia is suppressed by farnesol in rat heart. European Journal of Pharmacology, 2019, 859, 172488.	3.5	25
60	Induction of neutralizing antibodies against Tityus serrulatus toxins by immunization with a recombinant nontoxic protein. Toxicon, 2000, 38, 113-121.	1.6	24
61	R(+)-pulegone impairs Ca2+ homeostasis and causes negative inotropism in mammalian myocardium. European Journal of Pharmacology, 2011, 672, 135-142.	3.5	24
62	Cardiovascular effects of angiotensin A: A novel peptide of the renin–angiotensin system. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2014, 15, 480-486.	1.7	24
63	Molecular cloning and genomic analysis of TsNTxp: an immunogenic protein from Tityus serrulatus scorpion venom. Toxicon, 1999, 37, 507-517.	1.6	23
64	Cardiac dysfunction in rats prone to audiogenic epileptic seizures. Seizure: the Journal of the British Epilepsy Association, 2013, 22, 259-266.	2.0	23
65	Resistance exercise mediates remote ischemic preconditioning by limiting cardiac eNOS uncoupling. Journal of Molecular and Cellular Cardiology, 2018, 125, 61-72.	1.9	22
66	Increased oxidative stress and Ca <scp>MKII</scp> activity contribute to electroâ€mechanical defects in cardiomyocytes from a murine model of Huntington's disease. FEBS Journal, 2019, 286, 110-123.	4.7	22
67	Alamandine enhances cardiomyocyte contractility in hypertensive rats through a nitric oxide-dependent activation of CaMKII. American Journal of Physiology - Cell Physiology, 2020, 318, C740-C750.	4.6	22
68	Antiarrhythmogenic effects of a neurotoxin from the spider Phoneutria nigriventer. Toxicon, 2011, 57, 217-224.	1.6	21
69	Neonatal cardiomyocyte hypertrophy induced by endothelin-1 is blocked by estradiol acting on GPER. American Journal of Physiology - Cell Physiology, 2018, 314, C310-C322.	4.6	20
70	Alamandine improves cardiac remodeling induced by transverse aortic constriction in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H352-H363.	3.2	20
71	Novel insights into the development of chagasic cardiomyopathy: Role of PI3Kinase/NO axis. International Journal of Cardiology, 2013, 167, 3011-3020.	1.7	18
72	(-)-Terpinen-4-ol changes intracellular Ca2+ handling and induces pacing disturbance in rat hearts. European Journal of Pharmacology, 2017, 807, 56-63.	3.5	17

#	Article	IF	CITATIONS
73	Cardiomyocyte dysfunction during the chronic phase of Chagas disease. Memorias Do Instituto Oswaldo Cruz, 2013, 108, 243-245.	1.6	16
74	Ionizable Lipid Nanoparticle-Mediated Delivery of Plasmid DNA in Cardiomyocytes. International Journal of Nanomedicine, 0, Volume 17, 2865-2881.	6.7	16
75	Testosterone deficiency prevents left ventricular contractility dysfunction after myocardial infarction. Molecular and Cellular Endocrinology, 2018, 460, 14-23.	3.2	15
76	Autonomic and cardiovascular consequences resulting from experimental hemorrhagic stroke in the left or right intermediate insular cortex in rats. Autonomic Neuroscience: Basic and Clinical, 2020, 227, 102695.	2.8	15
77	Investigation of the cardiomyocyte dysfunction in bradykinin type 2 receptor knockout mice. Life Sciences, 2010, 87, 715-723.	4.3	13
78	Functionalized nanomaterials: are they effective to perform gene delivery to difficult-to-transfect cells with no cytotoxicity?. Nanoscale, 2015, 7, 18036-18043.	5 . 6	13
79	Dense optical flow software to quantify cellular contractility. Cell Reports Methods, 2021, 1, 100044.	2.9	12
80	Protein Restriction after Weaning Modifies the Calcium Kinetics and Induces Cardiomyocyte Contractile Dysfunction in Rats. Cells Tissues Organs, 2013, 198, 311-317.	2.3	11
81	Fast and slow-twitching muscles are differentially affected by reduced cholinergic transmission in mice deficient for VAChT: A mouse model for congenital myasthenia. Neurochemistry International, 2018, 120, 1-12.	3.8	11
82	Autonomic cardiocirculatory control in mice with reduced expression of the vesicular acetylcholine transporter. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H655-H662.	3.2	10
83	Dissection of the Effects of Quercetin on Mouse Myocardium. Basic and Clinical Pharmacology and Toxicology, 2017, 120, 550-559.	2.5	10
84	Ghrelin potentiates cardiac reactivity to stress by modulating sympathetic control and beta-adrenergic response. Life Sciences, 2018, 196, 84-92.	4.3	10
85	Protective and anti-inflammatory effects of acetylcholine in the heart. American Journal of Physiology - Cell Physiology, 2021, 320, C155-C161.	4.6	10
86	An Analysis of the Myocardial Transcriptome in a Mouse Model of Cardiac Dysfunction with Decreased Cholinergic Neurotransmission. PLoS ONE, 2012, 7, e39997.	2.5	9
87	Effects of severe caloric restriction from birth on the hearts of adult rats. Applied Physiology, Nutrition and Metabolism, 2013, 38, 879-885.	1.9	9
88	Letters to the Editor. FASEB Journal, 2014, 28, 2-3.	0.5	9
89	Molecular basis of $\langle i \rangle$ Period $1 \langle i \rangle$ regulation by adrenergic signaling in the heart. FASEB Journal, 2021, 35, e21886.	0.5	9
90	Neuromuscular synapse degeneration without muscle function loss in the diaphragm of a murine model for Huntington's Disease. Neurochemistry International, 2018, 116, 30-42.	3.8	8

#	Article	IF	Citations
91	HDR brachytherapy decreases proliferation rate and cellular progression of a radioresistant human squamous cell carcinoma in vitro. International Journal of Radiation Biology, 2017, 93, 958-966.	1.8	7
92	Abnormalities in the Motor Unit of a Fast-Twitch Lower Limb Skeletal Muscle in Huntington's Disease. ASN Neuro, 2019, 11, 175909141988621.	2.7	7
93	The challenge of molecular medicine: complexity versus Occam's razor. Journal of Clinical Investigation, 2003, 111, 801-803.	8.2	7
94	Endurance training restores spatially distinct cardiac mitochondrial function and myocardial contractility in ovariectomized rats. Free Radical Biology and Medicine, 2019, 130, 174-188.	2.9	6
95	Microscopy-based cellular contractility assay for adult, neonatal, and hiPSC cardiomyocytes. STAR Protocols, 2022, 3, 101144.	1.2	6
96	Basal and "¿½-Adrenergic Cardiomyocytes Contractility Dysfunction Induced by Dietary Protein Restriction is Associated with Downregulation of SERCA2a Expression and Disturbance of Endoplasmic Reticulum Ca2+Regulation in Rats. Cellular Physiology and Biochemistry, 2014, 34, 443-454.	1.6	5
97	Redox-Active Drug, MnTE-2-PyP ⁵⁺ , Prevents and Treats Cardiac Arrhythmias Preserving Heart Contractile Function. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-15.	4.0	5
98	A novel H ₂ S releasing-monastrol hybrid (MADTOH) inhibits L-type calcium channels. New Journal of Chemistry, 2021, 45, 671-678.	2.8	5
99	Peptide fragments of bradykinin show unexpected biological activity not mediated by B ₁ or B ₂ receptors. British Journal of Pharmacology, 2022, 179, 3061-3077.	5.4	5
100	Ryanodine receptor 2 (RYR2) dysfunction activates the unfolded protein response and perturbs cardiomyocyte maturation. Cardiovascular Research, 2023, 119, 221-235.	3.8	5
101	Aqueous fraction from Costus spiralis (Jacq.) Roscoe leaf reduces contractility by impairing the calcium inward current in the mammalian myocardium. Journal of Ethnopharmacology, 2011, 138, 382-389.	4.1	4
102	Cell apoptosis induced by hookworm antigens a strategy of immunomodulation. Frontiers in Bioscience - Elite, 2013, E5, 662-675.	1.8	4
103	Cardiomyocyte Proteome Remodeling due to Isoproterenolâ€Induced Cardiac Hypertrophy during the Compensated Phase. Proteomics - Clinical Applications, 2020, 14, e2000017.	1.6	4
104	Moving Pieces in a Cellular Puzzle: A Cryptic Peptide from the Scorpion Toxin Ts14 Activates AKT and ERK Signaling and Decreases Cardiac Myocyte Contractility via Dephosphorylation of Phospholamban. Journal of Proteome Research, 2020, 19, 3467-3477.	3.7	4
105	Increased cholinergic activity under conditions of low estrogen leads to adverse cardiac remodeling. American Journal of Physiology - Cell Physiology, 2021, 320, C602-C612.	4.6	4
106	Ketamine potentiates TRPV1 receptor signaling in the peripheral nociceptive pathways. Biochemical Pharmacology, 2020, 182, 114210.	4.4	4
107	Fullerene-Derivatives as Therapeutic Agents in Respiratory System and Neurodegenerative Disorders. Nanomedicine and Nanotoxicology, 2016, , 71-84.	0.2	3
108	Ablation of B1- and B2-kinin receptors causes cardiac dysfunction through redox-nitroso unbalance. Life Sciences, 2019, 228, 121-127.	4.3	3

#	Article	IF	CITATIONS
109	Absence of suppressor of cytokine signaling 2 turns cardiomyocytes unresponsive to LIF-dependent increases in Ca ²⁺ levels. American Journal of Physiology - Cell Physiology, 2017, 312, C478-C486.	4.6	2
110	Increased Cholinergic Tone Causes Pre-synaptic Neuromuscular Degeneration and is Associated with Impaired Diaphragm Function. Neuroscience, 2021, 460, 31-42.	2.3	2
111	Abstract P140: Alamandine Signaling in Cardiomyocytes in Health and Disease. Hypertension, 2015, 66, .	2.7	2
112	The challenge of molecular medicine: complexity versus Occam's razor. Journal of Clinical Investigation, 2003, 111, 801-803.	8.2	2
113	Exercise Training Protects Cardiomyocytes from Deleterious Effects of Palmitate. International Journal of Sports Medicine, 2017, 38, 949-953.	1.7	1
114	Cardiorespiratory alterations in rodents experimentally envenomed with Hadruroides lunatus scorpion venom. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2017, 23, 2.	1.4	1
115	The Use of Single Wall Carbon Nanotubes as a Delivery System for siRNA. Nanomedicine and Nanotoxicology, 2016, , 17-29.	0.2	1
116	Role of Calcium Signaling in Stem and Cancer Cell Proliferation. , 2013, , 93-137.		1
117	Impairment in Acetylcholine Release by Cardiomyocytes Leads to Enhanced Pathological Hypertrophy. Biophysical Journal, 2015, 108, 424a.	0.5	0
118	Front Cover: Cardiomyocyte Proteome Remodeling due to Isoproterenolâ€Induced Cardiac Hypertrophy during the Compensated Phase. Proteomics - Clinical Applications, 2020, 14, 2070041.	1.6	0
119	Autonomic response after hemorrhagic stroke in the right insular cortex: What is the common pathophysiology in rat and human?; Reply. Autonomic Neuroscience: Basic and Clinical, 2021, 231, 102772.	2.8	0
120	THE KALLIKREIN-KININ SYSTEM IS FALLING INTO PIECES: BRADYKININ FRAGMENTS ARE BIOLOGICAL ACTIVE PEPTIDES. Journal of Hypertension, 2021, 39, e256.	0.5	0
121	Aerobic Physical Training Improves Intracellular Calcium Signaling In Cardiomyocytes From C57BL/6J Mice Fed A High Fat Diet. Medicine and Science in Sports and Exercise, 2008, 40, S439.	0.4	0
122	Abstract 324: In Vivo Cross-talk Between Mineralocorticoid Receptor and Ang-(1-7) Enhances Ca2+ Signaling in Ventricular Myocytes. Hypertension, 2012, 60, .	2.7	0
123	Potential use of the nanoâ€compound fullerenol for the treatment of paraquatâ€induced acute lung injury in rats (660.16). FASEB Journal, 2014, 28, 660.16.	0.5	0
124	Abstract 422: Cardiovascular Regulation in Mice with Overexpression of the Gene of Vesicular Acetylcholine Transporter (VAChT). Hypertension, 2014, 64, .	2.7	0
125	AT1 Receptors Modulate Ca 2+ Transient in Adult Cardiomyocytes Treated with T3. FASEB Journal, 2015, 29, 952.12.	0.5	0
126	Antiâ∈Hypertrophic Effect of Estradiol in Cardiomyocytes is Mediated by GPER1. FASEB Journal, 2015, 29, 966.5.	0.5	0

#	Article	IF	CITATIONS
127	Abstract 138: Mas-related G-protein Coupled Receptor D Deficiency Leads to a Marked Dilated Cardiomyopathy in Mice. Hypertension, 2017, 70, .	2.7	0
128	Severe Calorie Restriction Reduces Cardiometabolic Risk Factors and Protects Rat Hearts from Ischemia/ Reperfusion Injury. , 2020, , .		0
129	Abstract MP120: Ryanodine Receptor 2 Prevents Endoplasmic Reticulum Stress-induced Defects in Cardiomyocyte Maturation. Circulation Research, 2020, 127, .	4.5	0
130	Neuronal cholinergic signaling constrains norepinephrine activity in the heart. American Journal of Physiology - Cell Physiology, 2022, 322, C794-C801.	4.6	О