Jun-Ho Yum

List of Publications by Citations

Source: https://exaly.com/author-pdf/1622337/jun-ho-yum-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 134
 22,922
 66
 141

 papers
 citations
 h-index
 g-index

 141
 24,423
 9.6
 6.59

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
134	Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. <i>Scientific Reports</i> , 2012 , 2, 591	4.9	5719
133	Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 1035-9	6.4	1699
132	Molecular engineering of organic sensitizers for solar cell applications. <i>Journal of the American Chemical Society</i> , 2006 , 128, 16701-7	16.4	728
131	Molecular engineering of organic sensitizers for dye-sensitized solar cell applications. <i>Journal of the American Chemical Society</i> , 2008 , 130, 6259-66	16.4	595
130	A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials. <i>Nature Communications</i> , 2012 , 3, 631	17.4	498
129	Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets. <i>ACS Nano</i> , 2011 , 5, 165-72	16.7	476
128	Efficient far red sensitization of nanocrystalline TiO2 films by an unsymmetrical squaraine dye. <i>Journal of the American Chemical Society</i> , 2007 , 129, 10320-1	16.4	466
127	Molecular cosensitization for efficient panchromatic dye-sensitized solar cells. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 8358-62	16.4	461
126	Highly efficient water splitting by a dual-absorber tandem cell. <i>Nature Photonics</i> , 2012 , 6, 824-828	33.9	398
125	Increased light harvesting in dye-sensitized solar cells with energy relay dyes. <i>Nature Photonics</i> , 2009 , 3, 406-411	33.9	398
124	Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 66-7	1 ^{6.4}	391
123	New paradigm in molecular engineering of sensitizers for solar cell applications. <i>Journal of the American Chemical Society</i> , 2009 , 131, 5930-4	16.4	365
122	Graphene nanoplatelets outperforming platinum as the electrocatalyst in co-bipyridine-mediated dye-sensitized solar cells. <i>Nano Letters</i> , 2011 , 11, 5501-6	11.5	340
121	CdSe Quantum Dot-Sensitized Solar Cells Exceeding Efficiency 1% at Full-Sun Intensity. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 11600-11608	3.8	328
120	Efficient sensitization of nanocrystalline TiO2 films by a near-IR-absorbing unsymmetrical zinc phthalocyanine. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 373-6	16.4	318
119	Cyclopentadithiophene bridged donor-acceptor dyes achieve high power conversion efficiencies in dye-sensitized solar cells based on the tris-cobalt bipyridine redox couple. <i>ChemSusChem</i> , 2011 , 4, 591-4	4 ^{8.3}	307
118	Panchromatic engineering for dye-sensitized solar cells. <i>Energy and Environmental Science</i> , 2011 , 4, 842-	-8 5 74	294

117	Recent developments in solid-state dye-sensitized solar cells. <i>ChemSusChem</i> , 2008 , 1, 699-707	8.3	268
116	Anthocyanins and betalains as light-harvesting pigments for dye-sensitized solar cells. <i>Solar Energy</i> , 2012 , 86, 1563-1575	6.8	266
115	Sb2S3-Based Mesoscopic Solar Cell using an Organic Hole Conductor. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 1524-1527	6.4	261
114	Organic-inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 1619-29	3.6	257
113	Graphene nanoplatelet cathode for Co(III)/(II) mediated dye-sensitized solar cells. <i>ACS Nano</i> , 2011 , 5, 9171-8	16.7	254
112	Optimization of distyryl-Bodipy chromophores for efficient panchromatic sensitization in dye sensitized solar cells. <i>Chemical Science</i> , 2011 , 2, 949	9.4	233
111	High open-circuit voltage solid-state dye-sensitized solar cells with organic dye. <i>Nano Letters</i> , 2009 , 9, 2487-92	11.5	220
110	A light-resistant organic sensitizer for solar-cell applications. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 1576-80	16.4	203
109	Dye-sensitized solar cells based on poly (3,4-ethylenedioxythiophene) counter electrode derived from ionic liquids. <i>Journal of Materials Chemistry</i> , 2010 , 20, 1654		197
108	Efficient co-sensitization of nanocrystalline TiO(2) films by organic sensitizers. <i>Chemical Communications</i> , 2007 , 4680-2	5.8	191
107	Effect of coadsorbent on the photovoltaic performance of zinc pthalocyanine-sensitized solar cells. <i>Langmuir</i> , 2008 , 24, 5636-40	4	190
106	Cobalt electrolyte/dye interactions in dye-sensitized solar cells: a combined computational and experimental study. <i>Journal of the American Chemical Society</i> , 2012 , 134, 19438-53	16.4	185
105	Molecular Design of Unsymmetrical Squaraine Dyes for High Efficiency Conversion of Low Energy Photons into Electrons Using TiO2 Nanocrystalline Films. <i>Advanced Functional Materials</i> , 2009 , 19, 2720	- 272 7	185
104	An improved perylene sensitizer for solar cell applications. <i>ChemSusChem</i> , 2008 , 1, 615-8	8.3	185
103	Cyclometallated iridium complexes for conversion of light into electricity and electricity into light. Journal of Organometallic Chemistry, 2009 , 694, 2661-2670	2.3	183
102	Raman Spectroscopy of Organic-Inorganic Halide Perovskites. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 401-6	6.4	182
101	Y[sub 3]Al[sub 5]O[sub 12]:Ce[sub 0.05] Phosphor Coatings on Gallium Nitride for White Light Emitting Diodes. <i>Journal of the Electrochemical Society</i> , 2003 , 150, H47	3.9	180
100	Di-branched di-anchoring organic dyes for dye-sensitized solar cells. <i>Energy and Environmental Science</i> , 2009 , 2, 1094	35.4	175

99	Examining architectures of photoanodephotovoltaic tandem cells for solar water splitting. <i>Journal of Materials Research</i> , 2010 , 25, 17-24	2.5	157
98	Carboxyethynyl anchoring ligands: a means to improving the efficiency of phthalocyanine-sensitized solar cells. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 4375-8	16.4	156
97	Structure-function relationships in unsymmetrical zinc phthalocyanines for dye-sensitized solar cells. <i>Chemistry - A European Journal</i> , 2009 , 15, 5130-7	4.8	150
96	High molar extinction coefficient organic sensitizers for efficient dye-sensitized solar cells. <i>Chemistry - A European Journal</i> , 2010 , 16, 1193-201	4.8	136
95	A high-efficiency panchromatic squaraine sensitizer for dye-sensitized solar cells. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 6619-21	16.4	131
94	Blue-coloured highly efficient dye-sensitized solar cells by implementing the diketopyrrolopyrrole chromophore. <i>Scientific Reports</i> , 2013 , 3, 2446	4.9	130
93	Molecular Cosensitization for Efficient Panchromatic Dye-Sensitized Solar Cells. <i>Angewandte Chemie</i> , 2007 , 119, 8510-8514	3.6	130
92	Unsymmetrical alkoxy zinc phthalocyanine for sensitization of nanocrystalline TiO2 films. <i>Solar Energy Materials and Solar Cells</i> , 2007 , 91, 1611-1617	6.4	121
91	Efficient platinum-free counter electrodes for dye-sensitized solar cell applications. <i>ChemPhysChem</i> , 2010 , 11, 2814-9	3.2	118
90	Optically transparent cathode for Co(III/II) mediated dye-sensitized solar cells based on graphene oxide. <i>ACS Applied Materials & amp; Interfaces</i> , 2012 , 4, 6999-7006	9.5	105
89	Effect of coadsorbent on the photovoltaic performance of squaraine sensitized nanocrystalline solar cells. <i>Nanotechnology</i> , 2008 , 19, 424005	3.4	103
88	Electron-rich heteroaromatic conjugated bipyridine based ruthenium sensitizer for efficient dye-sensitized solar cells. <i>Chemical Communications</i> , 2008 , 5318-20	5.8	101
87	The Many Faces of Mixed Ion Perovskites: Unraveling and Understanding the Crystallization Process. <i>ACS Energy Letters</i> , 2017 , 2, 2686-2693	20.1	100
86	OrganicIhorganic Halide Perovskites: Perspectives for Silicon-Based Tandem Solar Cells. <i>IEEE Journal of Photovoltaics</i> , 2014 , 4, 1545-1551	3.7	100
85	Flexible dye-sensitized solar cells using ZnO coated TiO2 nanoparticles. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2005 , 171, 269-273	4.7	98
84	Electrophoretically deposited TiO2 photo-electrodes for use in flexible dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 173, 1-6	4.7	98
83	High efficient donor acceptor ruthenium complex for dye-sensitized solar cell applications. <i>Energy and Environmental Science</i> , 2009 , 2, 100-102	35.4	97
82	High excitation transfer efficiency from energy relay dyes in dye-sensitized solar cells. <i>Nano Letters</i> , 2010 , 10, 3077-83	11.5	91

(2007-2013)

81	The role of ibridges in high-efficiency DSCs based on unsymmetrical squaraines. <i>Chemistry - A European Journal</i> , 2013 , 19, 1819-27	4.8	90
80	Improved performance of a dye-sensitized solar cell using a TiO2/ZnO/Eosin Y electrode. <i>Solar Energy Materials and Solar Cells</i> , 2003 , 79, 495-505	6.4	90
79	Increasing the efficiency of zinc-phthalocyanine based solar cells through modification of the anchoring ligand. <i>Energy and Environmental Science</i> , 2011 , 4, 189-194	35.4	89
78	Panchromatic response in solid-state dye-sensitized solar cells containing phosphorescent energy relay dyes. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 9277-80	16.4	89
77	Laser-Scribing Patterning for the Production of Organometallic Halide Perovskite Solar Modules. <i>IEEE Journal of Photovoltaics</i> , 2015 , 5, 1087-1092	3.7	87
76	Effect of anchoring groups in zinc phthalocyanine on the dye-sensitized solar cell performance and stability. <i>Chemical Science</i> , 2011 , 2, 1145	9.4	87
75	Highly Efficient Organic Sensitizers for Solid-State Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 16816-16820	3.8	86
74	Graphene-based cathodes for liquid-junction dye sensitized solar cells: Electrocatalytic and mass transport effects. <i>Electrochimica Acta</i> , 2014 , 128, 349-359	6.7	84
73	Improved performance in dye-sensitized solar cells employing TiO2 photoelectrodes coated with metal hydroxides. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 3215-9	3.4	82
72	Towards high-performance DPP-based sensitizers for DSC applications. <i>Chemical Communications</i> , 2012 , 48, 10727-9	5.8	73
71	Crown Ether Modulation Enables over 23% Efficient Formamidinium-Based Perovskite Solar Cells. Journal of the American Chemical Society, 2020 , 142, 19980-19991	16.4	72
70	Synthesis of size-controlled CdSe quantum dots and characterization of CdSellonjugated polymer blends for hybrid solar cells. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2006 , 179, 135-14	1 1 1·7	68
69	Facile preparation of large aspect ratio ellipsoidal anatase TiO2 nanoparticles and their application to dye-sensitized solar cell. <i>Electrochemistry Communications</i> , 2009 , 11, 909-912	5.1	66
68	Cyclometallated iridium complexes as sensitizers for dye-sensitized solar cells. <i>Chemistry - an Asian Journal</i> , 2010 , 5, 496-9	4.5	66
67	Evaluation of a ruthenium oxyquinolate architecture for dye-sensitized solar cells. <i>Inorganic Chemistry</i> , 2012 , 51, 1-3	5.1	65
66	A structural study of DPP-based sensitizers for DSC applications. <i>Chemical Communications</i> , 2012 , 48, 10724-6	5.8	64
65	Silicon-naphthalo/phthalocyanine-hybrid sensitizer for efficient red response in dye-sensitized solar cells. <i>Organic Letters</i> , 2013 , 15, 784-7	6.2	62
64	Efficient Sensitization of Nanocrystalline TiO2 Films by a Near-IR-Absorbing Unsymmetrical Zinc Phthalocyanine. <i>Angewandte Chemie</i> , 2007 , 119, 377-380	3.6	62

63	Molecular Engineering of Phthalocyanine Sensitizers for Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 17166-17170	3.8	61
62	High Molar Extinction Coefficient Ruthenium Sensitizers for Thin Film Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009 , 113, 1998-2003	3.8	57
61	PtNiO nanophase electrodes for dye-sensitized solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2006 , 90, 283-290	6.4	57
60	Inorganic p-Type Semiconductors: Their Applications and Progress in Dye-Sensitized Solar Cells and Perovskite Solar Cells. <i>Energies</i> , 2016 , 9, 331	3.1	57
59	Facile synthesis of a bulky BPTPA donor group suitable for cobalt electrolyte based dye sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 5535	13	55
58	Iron Oxide Photoelectrode with Multidimensional Architecture for Highly Efficient Photoelectrochemical Water Splitting. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 6583-6588	16.4	53
57	Incorporating multiple energy relay dyes in liquid dye-sensitized solar cells. <i>ChemPhysChem</i> , 2011 , 12, 657-61	3.2	50
56	Structural parameters controlling the performance of organized mesoporous TiO2 films in dye sensitized solar cells. <i>Inorganica Chimica Acta</i> , 2008 , 361, 656-662	2.7	50
55	Panchromatic cross-substituted squaraines for dye-sensitized solar cell applications. <i>ChemSusChem</i> , 2009 , 2, 621-4	8.3	49
54	Unsymmetrical extended Etonjugated zinc phthalocyanine for sensitization of nanocrystalline TiO2 films. <i>Journal of Chemical Sciences</i> , 2009 , 121, 75-82	1.8	49
53	Passivation Mechanism Exploiting Surface Dipoles Affords High-Performance Perovskite Solar Cells. <i>Journal of the American Chemical Society</i> , 2020 , 142, 11428-11433	16.4	48
52	Bis-Donor B is-Acceptor Tribranched Organic Sensitizers for Dye-Sensitized Solar Cells. <i>European Journal of Organic Chemistry</i> , 2011 , 2011, 6195-6205	3.2	48
51	Phenomenally high molar extinction coefficient sensitizer with "donor-acceptor" ligands for dye-sensitized solar cell applications. <i>Inorganic Chemistry</i> , 2008 , 47, 2267-73	5.1	47
50	Sterically hindered phthalocyanines for dye-sensitized solar cells: influence of the distance between the aromatic core and the anchoring group. <i>ChemPhysChem</i> , 2014 , 15, 1033-6	3.2	46
49	Carbongraphene nanocomposite cathodes for improved Co(II/III) mediated dye-sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 4982	13	46
48	A Light-Resistant Organic Sensitizer for Solar-Cell Applications. <i>Angewandte Chemie</i> , 2009 , 121, 1604-10	6 9 &	44
47	Phosphorescent energy relay dye for improved light harvesting response in liquid dye-sensitized solar cells. <i>Energy and Environmental Science</i> , 2010 , 3, 434	35.4	42
46	A new family of heteroleptic ruthenium(II) polypyridyl complexes for sensitization of nanocrystalline TiO2 films. <i>Dalton Transactions</i> , 2011 , 40, 4497-504	4.3	42

(2012-2013)

45	Diketopyrrolopyrrole-based sensitizers for dye-sensitized solar cell applications: anchor engineering. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 13978	13	40	
44	Panchromatic symmetrical squaraines: a step forward in the molecular engineering of low cost blue-greenish sensitizers for dye-sensitized solar cells. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 24173-7	3.6	39	
43	Heteroleptic ruthenium complex containing substituted triphenylamine hole-transport unit as sensitizer for stable dye-sensitized solar cell. <i>Nano Energy</i> , 2012 , 1, 6-12	17.1	36	
42	A High-Efficiency Panchromatic Squaraine Sensitizer for Dye-Sensitized Solar Cells. <i>Angewandte Chemie</i> , 2011 , 123, 6749-6751	3.6	36	
41	High-voltage (1.8 V) tandem solar cell system using a GaAs/AlXGa(1X)As graded solar cell and dye-sensitised solar cells with organic dyes having different absorption spectra. <i>Solar Energy</i> , 2011 , 85, 1220-1225	6.8	35	
40	Effect of heat and light on the performance of dye-sensitized solar cells based on organic sensitizers and nanostructured TiO2. <i>Nano Today</i> , 2010 , 5, 91-98	17.9	34	
39	Toward Higher Photovoltage: Effect of Blocking Layer on Cobalt Bipyridine Pyrazole Complexes as Redox Shuttle for Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 16799-16805	3.8	33	
38	Convergent synthesis of near-infrared absorbing, "push-pull", bisthiophene-substituted, zinc(II) phthalocyanines and their application in dye-sensitized solar cells. <i>Chemistry - A European Journal</i> , 2012 , 18, 6343-8	4.8	32	
37	Dye-sensitized solar cells with PtNiO and PtNiO2 biphase counter electrodes. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2007 , 189, 301-306	4.7	32	
36	Y3Al5O12:Ce0.05 phosphor coatings on a flexible substrate for use in white light-emitting diodes. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2004 , 251, 203-207	5.1	30	
35	Carboxyethynyl Anchoring Ligands: A Means to Improving the Efficiency of Phthalocyanine-Sensitized Solar Cells. <i>Angewandte Chemie</i> , 2012 , 124, 4451-4454	3.6	29	
34	Establishing Stability in Organic Semiconductor Photocathodes for Solar Hydrogen Production. Journal of the American Chemical Society, 2020 , 142, 7795-7802	16.4	26	
33	Functionalized alkyne bridged dendron based chromophores for dye-sensitized solar cell applications. <i>Energy and Environmental Science</i> , 2009 , 2, 1082	35.4	26	
32	Carboxy-1,4-phenylenevinylene- and carboxy-2, 6-naphthylene-vinylene unsymmetrical substituted zinc phthalocyanines for dye-sensitized solar cells. <i>Journal of Porphyrins and Phthalocyanines</i> , 2009 , 13, 369-375	1.8	25	
31	Blue electroluminescence from spiro-configured polyfluorene derivatives with hetero-atoms. <i>Journal of Luminescence</i> , 2005 , 115, 109-116	3.8	25	
30	A simple synthetic route to obtain pure trans-ruthenium(II) complexes for dye-sensitized solar cell applications. <i>ChemSusChem</i> , 2013 , 6, 2170-80	8.3	24	
29	Application of graphene-based nanostructures in dye-sensitized solar cells. <i>Physica Status Solidi (B): Basic Research</i> , 2013 , 250, 2643-2648	1.3	24	
28	Towards flexibility: metal free plastic cathodes for dye sensitized solar cells. <i>Chemical Communications</i> , 2012 , 48, 9714-6	5.8	24	

27	Effect of bulky groups in ruthenium heteroleptic sensitizers on dye sensitized solar cell performance. <i>Chemical Science</i> , 2012 , 3, 1177	9.4	23
26	Highly soluble energy relay dyes for dye-sensitized solar cells. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 11306-12	3.6	23
25	Organized Mesoporous TiO[sub 2] Films Stabilized by Phosphorus: Application for Dye-Sensitized Solar Cells. <i>Journal of the Electrochemical Society</i> , 2010 , 157, H99	3.9	23
24	Successful demonstration of an efficient I(-)/(SeCN)2 redox mediator for dye-sensitized solar cells. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 469-72	3.6	22
23	Comparison of Y3Al5O12:Ce0.05 phosphor coating methods for white-light-emitting diode on gallium nitride 2001 ,		22
22	The Effect of Ar/O2 Ratio on Electrochromic Response Time of Ni Oxides Grown Using an RF Sputtering System. <i>Japanese Journal of Applied Physics</i> , 2002 , 41, L212-L215	1.4	21
21	Lead Halide Perovskite Quantum Dots To Enhance the Power Conversion Efficiency of Organic Solar Cells. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 12696-12704	16.4	19
20	Peripherally and axially carboxylic acid substituted subphthalocyanines for dye-sensitized solar cells. <i>Chemistry - A European Journal</i> , 2014 , 20, 2016-21	4.8	19
19	Nanocrystalline Boron-Doped Diamond as a Corrosion-Resistant Anode for Water Oxidation via Si Photoelectrodes. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 29552-29564	9.5	17
18	Influence of salts on ionic diffusion in oligomer electrolytes and its implication in dye-sensitized solar cells. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2008 , 194, 148-151	4.7	16
17	Iron Oxide Photoelectrode with Multidimensional Architecture for Highly Efficient Photoelectrochemical Water Splitting. <i>Angewandte Chemie</i> , 2017 , 129, 6683-6688	3.6	15
16	Customized Energy Down-Shift Using Iridium Complexes for Enhanced Performance of Polymer Solar Cells. <i>ACS Energy Letters</i> , 2016 , 1, 991-999	20.1	15
15	Adhesion Improvement of Phosphor Layer by Combining Electrophoretic Deposition and UV Curing. <i>Journal of the Electrochemical Society</i> , 2003 , 150, H43	3.9	12
14	Pyridyl- and Picolinic Acid Substituted Zinc(II) Phthalocyanines for Dye-Sensitized Solar Cells. <i>ChemPlusChem</i> , 2017 , 82, 1057-1061	2.8	11
13	Nanofibrous TiO2 improving performance of mesoporous TiO2 electrode in dye-sensitized solar cell. <i>Journal of Nanoparticle Research</i> , 2013 , 15, 1	2.3	11
12	Panchromatic Response in Solid-State Dye-Sensitized Solar Cells Containing Phosphorescent Energy Relay Dyes. <i>Angewandte Chemie</i> , 2009 , 121, 9441-9444	3.6	11
11	Full Color Screen by EPD Combined with Photolithography for Flat Panel Displays. <i>Journal of the Electrochemical Society</i> , 2004 , 151, H27	3.9	11
10	A semiconducting polymer bulk heterojunction photoanode for solar water oxidation. <i>Nature Catalysis</i> , 2021 , 4, 431-438	36.5	11

LIST OF PUBLICATIONS

9	Panchromatic light harvesting by dye- and quantum dot-sensitized solar cells. <i>Solar Energy</i> , 2014 , 109, 183-188	6.8	10	
8	Multidimensional Anodized Titanium Foam Photoelectrode for Efficient Utilization of Photons in Mesoscopic Solar Cells. <i>Small</i> , 2017 , 13, 1701458	11	10	
7	A molecularly engineered fluorene-substituted Ru-complex for efficient mesoscopic dye-sensitized solar cells. <i>Advances in Natural Sciences: Nanoscience and Nanotechnology</i> , 2011 , 2, 035016	1.6	10	
6	Lead Halide Perovskite Quantum Dots To Enhance the Power Conversion Efficiency of Organic Solar Cells. <i>Angewandte Chemie</i> , 2019 , 131, 12826-12834	3.6	7	
5	CdSe Quantum Dots Sensitized TiO2Electrodes for Photovoltaic Cells. <i>Journal of the Korean Electrochemical Society</i> , 2007 , 10, 257-261		7	
4	Robust Electron Transport Layers via In Situ Cross-Linking of Perylene Diimide and Fullerene for Perovskite Solar Cells. <i>ACS Applied Energy Materials</i> , 2019 , 2, 6616-6623	6.1	6	
3	Benzodithiophene-Based Spacers for Layered and Quasi-Layered Lead Halide Perovskite Solar Cells. <i>ChemSusChem</i> , 2021 , 14, 3001-3009	8.3	3	
2	A hybrid bulk-heterojunction photoanode for direct solar-to-chemical conversion. <i>Energy and Environmental Science</i> , 2021 , 14, 3141-3151	35.4	3	
1	Substitution of Carbazole Modified Fluorenes as Extension in Ru(II) Complex-Influence on Performance of Dye-Sensitized Solar Cells. <i>Advances in OptoElectronics</i> , 2011 , 2011, 1-10	0.5	1	