List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1622249/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Beyond Prostaglandins—Chemistry and Biology of Cyclic Oxygenated Metabolites Formed by Freeâ€Radical Pathways from Polyunsaturated Fatty Acids. Angewandte Chemie - International Edition, 2008, 47, 5894-5955.	13.8	176
2	The Combination of Anionic and Radical Reactions to Oxidative Tandem Processes Exemplified by the Synthesis of Functionalized Pyrrolidines. Journal of the American Chemical Society, 2000, 122, 5212-5213.	13.7	95
3	Radicals in Transition Metal Catalyzed Reactions? Transition Metal Catalyzed Radical Reactions? A Fruitful Interplay Anyway. Topics in Current Chemistry, 2011, 320, 121-189.	4.0	79
4	Radicals in Transition Metal Catalyzed Reactions? Transition Metal Catalyzed Radical Reactions?: A Fruitful Interplay Anyway. Topics in Current Chemistry, 2011, 320, 323-451.	4.0	79
5	Very Strong Organosuperbases Formed by Combining Imidazole and Guanidine Bases: Synthesis, Structure, and Basicity. Angewandte Chemie - International Edition, 2014, 53, 1435-1438.	13.8	66
6	Highly Efficient Generation of Radicals from Ester Enolates by the Ferrocenium Ion. Application to Selective α-Oxygenation and Dimerization Reactions of Estersâ€. Journal of Organic Chemistry, 1998, 63, 7130-7131.	3.2	64
7	Lithium Malonate Enolates as Precursors for Radical Reactions â^' Convenient Induction of Radical Cyclizations with either Radical or Cationic Termination. European Journal of Organic Chemistry, 2001, 2001, 3333.	2.4	62
8	Acceptor‣ubstituted Ferrocenium Salts as Strong, Singleâ€Electron Oxidants: Synthesis, Electrochemistry, Theoretical Investigations, and Initial Synthetic Application. Chemistry - A European Journal, 2012, 18, 12267-12277.	3.3	59
9	Radicals in Transition Metal Catalyzed Reactions? Transition Metal Catalyzed Radical Reactions? – A Fruitful Interplay Anyway. Topics in Current Chemistry, 2011, 320, 191-322.	4.0	55
10	General and Efficient αâ€Oxygenation of Carbonyl Compounds by TEMPO Induced by Singleâ€Electronâ€Transfer Oxidation of Their Enolates. European Journal of Organic Chemistry, 2012, 2012, 4461-4482.	2.4	55
11	Radicals and Transitionâ€Metal Catalysis: An Alliance Par Excellence to Increase Reactivity and Selectivity in Organic Chemistry. Angewandte Chemie - International Edition, 2009, 48, 6386-6389.	13.8	48
12	Oxidative Catalysis Using the Stoichiometric Oxidant as a Reagent: An Efficient Strategy for Singleâ€Electronâ€Transferâ€Induced Tandem Anion–Radical Reactions. Angewandte Chemie - International Edition, 2014, 53, 9944-9948.	13.8	46
13	Electron transfer-induced sequential transformations of malonates by the ferrocenium ion. Chemical Communications, 1998, , 209-210.	4.1	43
14	Oxidative Photoredoxâ€Catalytic Activation of Aliphatic Nucleophiles for C(sp ³)–C(sp ²) Crossâ€Coupling Reactions. Angewandte Chemie - International Edition, 2014, 53, 13326-13328.	13.8	43
15	Oxidative Enolate Cyclizations of 6,8-Nonadienoates: Towards the Synthesis of Prostanes. European Journal of Organic Chemistry, 2002, 2002, 718-735.	2.4	41
16	Evolution of moth sex pheromone composition by a single amino acid substitution in a fatty acid desaturase. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12586-12591.	7.1	39
17	Efficient Oxidative Radical Cyclizations of Ester Enolates with Carbocation Desilylation as Termination:  Synthesis of Cyclopentanoid Monoterpenes and Analoguesâ€. Organic Letters, 2004, 6, 257-260.	4.6	38
18	Anaerobic Nitroxide-Catalyzed Oxidation of Alcohols Using the NO+/NO· Redox Pair. Organic Letters, 2014, 16, 58-61	4.6	37

#	Article	IF	CITATIONS
19	Synthesis of Bridged Diketopiperazines by Using the Persistent Radical Effect and a Formal Synthesis of Bicyclomycin. Angewandte Chemie - International Edition, 2015, 54, 12153-12157.	13.8	37
20	Total Synthesis of 15â€F _{2t} â€Isoprostane by Using a New Oxidative Cyclization of Distonic Radical Anions as the Key Step. Chemistry - A European Journal, 2009, 15, 58-62.	3.3	33
21	A cautionary note on the correct structure assignment of phytoprostanes and the emergence of a new prostane ring system. Prostaglandins Leukotrienes and Essential Fatty Acids, 2010, 82, 83-86.	2.2	32
22	Design of Novel Uncharged Organic Superbases: Merging Basicity and Functionality. Accounts of Chemical Research, 2021, 54, 3108-3123.	15.6	31
23	Toward the Elucidation of the Metabolism of 15-E ₂ -Isoprostane: The Total Synthesis of the Methyl Ester of a Potential Central Metabolite. Journal of Organic Chemistry, 2010, 75, 4480-4491.	3.2	28
24	Tandem anionic Michael addition/radical cyclizations: a new and efficient strategy for the synthesis of functionalized cyclopentanes. Chemical Communications, 2001, , 1600-1601.	4.1	27
25	Cu(II)-Mediated One-Pot Alkoxide Conjugate Addition/Radical Cyclizations as a Versatile Method to Highly Functionalized Tetrahydrofuran Derivatives. Synlett, 2004, 2004, 1207-1210.	1.8	25
26	Tetrahydrofuran Lignans via Tandem Oxidative Anionicâ^'Radical Processes or Reductive Radical Cyclizations. Organic Letters, 2006, 8, 4481-4484.	4.6	25
27	Stylopsal: The First Identified Female-produced Sex Pheromone of Strepsiptera. Journal of Chemical Ecology, 2012, 38, 1483-1491.	1.8	24
28	Perhaloalkylation of Metal Enolates—Unconventional and Versatile. Angewandte Chemie - International Edition, 2011, 50, 4542-4544.	13.8	23
29	Photochemical Câ^'H Amination of Ethers and Geminal Difunctionalization Reactions in One Pot. Angewandte Chemie - International Edition, 2019, 58, 12440-12445.	13.8	23
30	N,3,4-Trisubstituted pyrrolidines by electron transfer-induced oxidative cyclizations of N-allylic β-amino ester enolates. Tetrahedron, 2009, 65, 10917-10929.	1.9	22
31	Asymmetric Domino Aza-Michael Addition/[3 + 2] Cycloaddition Reactions as a Versatile Approach to α,β,γ-Triamino Acid Derivatives. Organic Letters, 2014, 16, 1088-1091.	4.6	22
32	Total Synthesis, Proof of Absolute Configuration, and Biosynthetic Origin of Stylopsal, the First Isolated Sex Pheromone of <i>Strepsiptera</i> . Chemistry - A European Journal, 2013, 19, 8515-8524.	3.3	21
33	First total synthesis of <i>ent</i> -asperparaline C and assignment of the absolute configuration of asperparaline C. Chemical Communications, 2019, 55, 3931-3934.	4.1	21
34	Oxidative radical cyclizations of malonate enolates induced by the ferrocenium ion – a remarkable influence of enolate counterion and additives. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 2277-2282.	1.3	20
35	Total Synthesis of <i>ent</i> -Pregnanolone Sulfate and Its Biological Investigation at the NMDA Receptor. Organic Letters, 2018, 20, 946-949.	4.6	20
36	Gliotoxin: Nature's Way of Making the Epidithio Bridge. Angewandte Chemie - International Edition, 2014, 53, 3312-3314.	13.8	19

#	Article	IF	CITATIONS
37	Tandem Anionic oxyâ€Cope Rearrangement/Oxygenation Reactions as a Versatile Method for Approaching Diverse Scaffolds. Angewandte Chemie - International Edition, 2020, 59, 6160-6165.	13.8	16
38	Highly Functionalized and Potent Antiviral Cyclopentane Derivatives Formed by a Tandem Process Consisting of Organometallic, Transitionâ€Metalâ€Catalyzed, and Radical Reaction Steps. Chemistry - A European Journal, 2014, 20, 10298-10304.	3.3	15
39	Divergent Reactivity of Alkyl Aryl Sulfones with Bases: Selective Functionalization of <i>ortho</i> â€Aryl and αâ€Alkyl Units Enabled by a Unique Carbanion Transmetalation. European Journal of Organic Chemistry, 2014, 2014, 1461-1476.	2.4	15
40	Oxidative tandem alkoxide conjugate addition to nitroalkenes/radical 5-exo cyclizations—a versatile synthesis of functionalized 3-nitrotetrahydrofurans. Tetrahedron, 2012, 68, 1521-1539.	1.9	13
41	Sequential Oxidative and Reductive Radical Cyclization Approach toward Asperparaline C and Synthesis of Its 8-Oxo Analogue. Organic Letters, 2017, 19, 1152-1155.	4.6	13
42	New Phosphine Ligand Architectures Lead to Efficient Gold Catalysts for Cycloisomerization Reactions at Very Low Loading. Advanced Synthesis and Catalysis, 2018, 360, 4215-4224.	4.3	13
43	Elucidation of the Reaction Mechanism of <i>ortho</i> →α Transmetalation Reactions of Alkyl Aryl Sulfone Carbanions. European Journal of Organic Chemistry, 2014, 2014, 4610-4623.	2.4	12
44	Bioinspired total synthesis of tetrahydrofuran lignans by tandem nucleophilic addition/redox isomerization/oxidative coupling and cycloetherification reactions as key steps. Organic and Biomolecular Chemistry, 2018, 16, 750-755.	2.8	12
45	Diastereoselective Radical Couplings Enable the Asymmetric Synthesis of <i>anti</i> â€Î²â€Aminoâ€Î±â€hydroxy Carboxylic Acid Derivatives. European Journal of Organic Chemistry, 2018, 2018, 5222-5230.	2.4	12
46	Polyfunctional βâ€Dicarbonyl Compounds by Michael Addition Reactions of Ester Enolates to αâ€Benzylidene and αâ€Alkylideneâ€Î²â€dicarbonyl Compounds. European Journal of Organic Chemistry, 2012, 3459-3475.	20.142,	11
47	Highly Functionalized Cyclopentane Derivatives by Tandem Michael Addition/Radical Cyclization/Oxygenation Reactions. Chemistry - A European Journal, 2015, 21, 9877-9888.	3.3	11
48	<i>N</i> ,2,3,4â€Tetrasubstituted Pyrrolidines through Tandem Lithium Amide Conjugate Addition/Radical Cyclization/Oxygenation Reactions. European Journal of Organic Chemistry, 2016, 2016, 3862-3871.	2.4	11
49	Unified Total Synthesis of Diverse Meroterpenoids from <i>Ganoderma Applanatum</i> . Organic Letters, 2022, 24, 4552-4556.	4.6	11
50	Facile and Highly Diastereoselective Synthesis of <i>syn</i> ―and <i>cis</i> â€1,2â€Diol Derivatives from Protected αâ€Hydroxy Ketones. European Journal of Organic Chemistry, 2015, 2015, 7785-7798.	2.4	10
51	Total syntheses of all tri-oxygenated 16-phytoprostane classes via a common precursor constructed by oxidative cyclization and alkyl–alkyl coupling reactions as the key steps. Organic and Biomolecular Chemistry, 2017, 15, 9408-9414.	2.8	9
52	Photochemical Câ^'H Amination of Ethers and Geminal Difunctionalization Reactions in One Pot. Angewandte Chemie, 2019, 131, 12570-12575.	2.0	9
53	4-(1-Haloalkyl)-3-nitrotetrahydrofurans as versatile scaffolds for the synthesis of diversely functionalized tetrahydrofurans. Tetrahedron, 2012, 68, 447-463.	1.9	8
54	The Lithiation Reactivity and Selectivity of Differentially Branched Alkyldiphenylphosphine Oxides – A Simple and Versatile Approach to <i>orthoâ€</i> Functionalized Arylphosphine Oxides. Advanced Synthesis and Catalysis, 2015, 357, 793-799.	4.3	8

#	Article	IF	CITATIONS
55	A New Synthetic Approach to Thiopheneâ€Nickel(II)porphyrin Hybrid Molecules and their Electrochemical and Computational Investigation. Macromolecular Chemistry and Physics, 2010, 211, 359-371.	2.2	7
56	Oxidative radical cyclizations of diketopiperazines bearing an amidomalonate unit. Heterointermediate reaction sequences toward the asperparalines and stephacidins. Free Radical Research, 2016, 50, S6-S17.	3.3	7
57	Unique Stereoselective Homolytic Câ^'O Bond Activation in Diketopiperazineâ€Đerived Alkoxyamines by Adjacent Amide Pyramidalization. Chemistry - A European Journal, 2018, 24, 15336-15345.	3.3	7
58	New Versatile Strategy towards Zinc(II)-, Copper(II)- and Cobalt(II)-Metallated Thiophene/Porphyrin-Hybrids. European Journal of Organic Chemistry, 2010, 2010, n/a-n/a.	2.4	6
59	A general approach to iridoids by applying a new Julia olefination and a tandem anion-radical-carbocation crossover reaction. Organic and Biomolecular Chemistry, 2016, 14, 9612-9621.	2.8	6
60	Intermolecular Formation of Two Câ^'C Bonds across Olefins Enabled by Boronâ€Based Relay Strategies. Angewandte Chemie - International Edition, 2017, 56, 9656-9658.	13.8	6
61	Simplified methods for the functionalisation of 3-hexoxythiophenes at the 5-position and further reactions to alkynyl and vinyl derivatives. Chemical Communications, 2009, , 565-567.	4.1	5
62	First Total Syntheses of Novel Nonâ€Enzymatic Polyunsaturated Fatty Acid Metabolites and Their Identification in Edible Oils. Chemistry - A European Journal, 2020, 26, 10090-10098.	3.3	5
63	Application of the Brook Rearrangement in Tandem with Single Electron Transfer Oxidative and Radical Processes. European Journal of Organic Chemistry, 2020, 2020, 2854-2866.	2.4	5
64	α,γ-Dioxygenated amides via tandem Brook rearrangement/radical oxygenation reactions and their application to syntheses of γ-lactams. Beilstein Journal of Organic Chemistry, 2021, 17, 688-704.	2.2	4
65	Intermolekulare Bildung zweier Câ€Câ€Bindungen an Olefinen mittels Borâ€basierter Staffelstrategien. Angewandte Chemie, 2017, 129, 9784-9786.	2.0	3
66	Lithium Chloride Catalyzed Asymmetric Domino Azaâ€Michael Addition/[3 + 2] Cycloaddition Reactions for the Synthesis of Spiro―and Bicyclic α,β,γâ€Triamino Acid Derivatives. European Journal of Organic Chemistry, 2018, 2018, 5213-5221.	2.4	3
67	First Total Synthesis of Phytoprostanes with Prostaglandin‣ike Configuration, Evidence for Their Formation in Edible Vegetable Oils and Orienting Study of Their Biological Activity. Chemistry - A European Journal, 2021, 27, 9556-9562.	3.3	3
68	Enolate-Based Regioselective Anti-Beckmann C–C Bond Cleavage of Ketones. Journal of Organic Chemistry, 2021, 86, 11608-11632.	3.2	3
69	Identification of Novel Carbonic Anhydrase IX Inhibitors Using High-Throughput Screening of Pooled Compound Libraries by DNA-Linked Inhibitor Antibody Assay (DIANA). SLAS Discovery, 2020, 25, 1026-1037.	2.7	2
70	Single Electron Transferâ€Induced Selective αâ€Oxygenation of Glycine Derivatives. Advanced Synthesis and Catalysis, 2022, 364, 405-412.	4.3	2
71	Tandemreaktionen aus anionischer Oxyâ€Copeâ€Umlagerung und Oxygenierung als vielseitiger Zugang zu verschiedenartigen Gerüsten. Angewandte Chemie, 2020, 132, 6218-6223.	2.0	2
72	A Diastereoselective Catalytic Approach to Pentasubstituted Pyrrolidines by Tandem Anionicâ€Radical Crossâ€Over Reactions. Advanced Synthesis and Catalysis, 2022, 364, 671-678.	4.3	2

#	Article	IF	CITATIONS
73	COST Action CM1201 "Biomimetic Radical Chemistryâ€ı free radical chemistry successfully meets many disciplines. Free Radical Research, 2016, 50, S112-S128.	3.3	1
74	Sulfonyl Nitrene and Amidyl Radical: Structure and Reactivity. Chemistry - A European Journal, 2022, , .	3.3	1