Moisés Batista

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1622177/publications.pdf

Version: 2024-02-01

567281 501196 1,064 85 15 28 citations h-index g-index papers 87 87 87 883 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Evaluation of the printing strategies design on the mechanical and tribological response of acrylonitrile styrene acrylate (ASA) additive manufacturing parts. Rapid Prototyping Journal, 2022, 28, 479-489.	3.2	9
2	Tribological Wear Effects of Laser Texture Design on AISI 630 Stainless Steel under Lubricated Conditions. Metals, 2022, 12, 543.	2.3	4
3	Laser surface texturing as a finishing process for aerospace alloys. , 2021, , 643-666.		2
4	Study of milling of low thickness thermoplastic carbon fiber composites in function of tool geometry and cutting conditions. International Journal of Advanced Manufacturing Technology, 2021, 114, 2515-2526.	3.0	10
5	Evaluation of geometrical defects in AWJM process of a hybrid CFRTP/Steel structure. International Journal of Mechanical Sciences, 2021, 210, 106748.	6.7	7
6	Machining of polymeric composite materials by water jet with abrasive. , 2021, , 397-415.		0
7	Supply chain production planning of a manufacturing project system 4.0: case study: Shipbuilding. IOP Conference Series: Materials Science and Engineering, 2021, 1193, 012051.	0.6	O
8	Defectology Characterization of FDM Drilled Parts. IOP Conference Series: Materials Science and Engineering, 2021, 1193, 012054.	0.6	1
9	Tribological characterization of Fused Deposition Modelling parts. IOP Conference Series: Materials Science and Engineering, 2021, 1193, 012068.	0.6	3
10	Achieving a sustainable shipbuilding supply chain under I4.0 perspective. Journal of Cleaner Production, 2020, 244, 118789.	9.3	95
11	Evaluation of the Joining Response of Biodegradable Polylactic Acid (PLA) from Fused Deposition Modeling by Infrared Laser Irradiation. Polymers, 2020, 12, 2479.	4.5	6
12	On the Surface Quality of CFRTP/Steel Hybrid Structures Machined by AWJM. Metals, 2020, 10, 983.	2.3	9
13	Assessing Sustainability in the Shipbuilding Supply Chain 4.0: A Systematic Review. Sustainability, 2020, 12, 6373.	3.2	10
14	Sustainability in the Aerospace, Naval, and Automotive Supply Chain 4.0: Descriptive Review. Materials, 2020, 13, 5625.	2.9	23
15	On the Machinability of an Al-63%SiC Metal Matrix Composite. Materials, 2020, 13, 1186.	2.9	11
16	Characterization and Defect Analysis of Machined Regions in Al-SiC Metal Matrix Composites Using an Abrasive Water Jet Machining Process. Applied Sciences (Switzerland), 2020, 10, 1512.	2.5	18
17	Surface Quality and Free Energy Evaluation of s275 Steel by Shot Blasting, Abrasive Water Jet Texturing and Laser Surface Texturing. Metals, 2020, 10, 290.	2.3	16
18	Study of the surface quality of carbon fiber–reinforced thermoplastic matrix composite (CFRTP) machined by abrasive water jet (AWJM). International Journal of Advanced Manufacturing Technology, 2020, 107, 3299-3313.	3.0	32

#	Article	IF	Citations
19	Study of the one-shot drilling of CFRP/Ti6Al4V stacks with a double tip angle cutting-tool geometry. AIP Conference Proceedings, 2019, , .	0.4	4
20	Analysis of Secondary Adhesion Wear Mechanism on Hard Machining of Titanium Aerospace Alloy. Materials, 2019, 12, 2015.	2.9	13
21	Study of the Tool Wear Process in the Dry Turning of Al–Cu Alloy. Metals, 2019, 9, 1094.	2.3	15
22	Experimental Study of Laser Texturing Processes on the Lubricant Retention of Carbide (WC-Co) Surfaces. Key Engineering Materials, 2019, 813, 55-61.	0.4	5
23	Impact of Chemical Post-Processing in Fused Deposition Modelling (FDM) on Polylactic Acid (PLA) Surface Quality and Structure. Polymers, 2019, 11, 566.	4.5	52
24	Fused deposition modelling interfacial and interlayer bonding in PLA post-processed parts. Rapid Prototyping Journal, 2019, 26, 585-592.	3.2	15
25	Defect Analysis and Detection of Cutting Regions in CFRP Machining Using AWJM. Materials, 2019, 12, 4055.	2.9	14
26	Kerf Taper Defect Minimization Based on Abrasive Waterjet Machining of Low Thickness Thermoplastic Carbon Fiber Composites C/TPU. Materials, 2019, 12, 4192.	2.9	28
27	Shipbuilding 4.0 Index Approaching Supply Chain. Materials, 2019, 12, 4129.	2.9	18
28	Effects of Laser Processing Parameters on Texturized Layer Development and Surface Features of Ti6Al4V Alloy Samples. Coatings, 2018, 8, 6.	2.6	14
29	Experimental Parametric Model for Adhesion Wear Measurements in the Dry Turning of an AA2024 Alloy. Materials, 2018, 11, 1598.	2.9	11
30	Criteria selection for a comparative study of functional performance of Fused Deposition Modelling and Vacuum Casting processes. Journal of Manufacturing Processes, 2018, 35, 721-727.	5.9	16
31	Influence of PLA Filament Conditions on Characteristics of FDM Parts. Materials, 2018, 11, 1322.	2.9	109
32	Application of Pin-On-Disc Techniques for the Study of Tribological Interferences in the Dry Machining of A92024-T3 (Al–Cu) Alloys. Materials, 2018, 11, 1236.	2.9	42
33	Tool Wear Mechanism in Cutting of Stack CFRP/UNS A97075. Materials, 2018, 11, 1276.	2.9	19
34	Effects of Laser Microtexturing on the Wetting Behavior of Ti6Al4V Alloy. Coatings, 2018, 8, 145.	2.6	15
35	Three-dimensional chemical mapping using non-destructive SEM and photogrammetry. Scientific Reports, 2018, 8, 11000.	3.3	8
36	A Comparison of Macro and Microgeometrical Properties of Specimens Made With a FDM Commercial Printer and its Opensource Retrofit Version. Annals of DAAAM & Proceedings, 2018, , 1108-1115.	0.1	3

#	Article	IF	CITATIONS
37	POST-PROCESSING OF PLA PARTS AFTER ADDITIVE MANUFACTURING BY FDM TECHNOLOGY. Dyna (Spain), 2018, 93, 625-629.	0.2	4
38	Preliminary Characterization of the Rivet Shaving Process. Annals of DAAAM $\&$ Proceedings, 2018, , 1116-1124.	0.1	0
39	FEM based evaluation of Fused Layer Modelling monolayers in tensile testing. Procedia Manufacturing, 2017, 13, 916-923.	1.9	11
40	Preliminary study of PLA wire colour effects on geometric characteristics of parts manufactured by FDM. Procedia Manufacturing, 2017, 13, 924-931.	1.9	18
41	Analysis of secondary adhesion tool wear effects on surface roughness in dry turning process of UNS A92024 aluminium alloy. International Journal of Mechatronics and Manufacturing Systems, 2017, 10, 23.	0.1	0
42	Processing and Quality Evaluation of Additive Manufacturing Monolayer Specimens. Advances in Materials Science and Engineering, 2016, 2016, 1-8.	1.8	14
43	Preliminary Study of the Influence of Manufacturing Parameters in Fused Deposition Modeling. Annals of DAAAM & Proceedings, 2016, , 1004-1008.	0.1	4
44	FVM Based Study of the Influence of Secondary Adhesion Tool Wear on Surface Roughness of Dry Turned Al-Cu Aerospace Alloy. Procedia Engineering, 2015, 132, 600-607.	1.2	8
45	3D-FEM Based Methodology for Analysing Contour Milling Processes of Ti Alloys. Procedia Engineering, 2015, 132, 1136-1143.	1.2	3
46	Microgeometrical Deviations based Study of CFRP Drilled-holes. Procedia Engineering, 2015, 132, 624-631.	1,2	2
47	R&D&i Management System in Distributed Manufacturing Systems. Procedia Engineering, 2015, 132, 54-61.	1.2	3
48	Preliminary Design and Analysis of Tensile Test Samples Developed by Additive Manufacturing. Procedia Engineering, 2015, 132, 132-139.	1.2	20
49	Reverse Engineering Based Methodology for Modelling Cutting Tools. Procedia Engineering, 2015, 132, 1144-1151.	1.2	15
50	Cutting Speed and Feedrate Based Analysis of Cutting Forces in the One Shot Drilling (OSD) of CFRC/Al Hybrid Stacks. , 2014, , .		1
51	Evaluation of Cutting Tools Secondary Adhesion Wear Using 3D Optical Topography Techniques — Application to Dry Turning of Al-Cu Aerospace Alloy. Materials Science Forum, 2014, 797, 53-58.	0.3	0
52	Taylor's Model Based Analysis of Turning Inserts Tool-Life in the Dry Turning of UNS R56400 Alloy. , 2014, , .		1
53	Cutting Forces Parametric Model for the Dry High Speed Contour Milling of Aerospace Aluminium Alloys. Procedia Engineering, 2013, 63, 735-742.	1.2	33
54	FVM based Methodology for Evaluating Adhesion Wear of Cutting Tools. Procedia CIRP, 2013, 8, 552-557.	1.9	6

#	Article	IF	Citations
55	SOM based Methodology for Evaluating Shrinkage Parameter of the Chip Developed in Titanium Dry Turning Process. Procedia CIRP, 2013, 8, 534-539.	1.9	8
56	Metrological Evaluation of Secondary Adhesion Wear Effects in the Dry Turning of UNS-A92024-T3 Alloy through Focus-variation Microscopy (FVM). Procedia Engineering, 2013, 63, 804-811.	1.2	5
57	Analysis of the evolution of the Built-Up Edge and Built-Up Layer formation mechanisms in the dry turning of aeronautical aluminium alloys. Wear, 2013, 302, 1209-1218.	3.1	139
58	Design and Development of Integrated Lab-Practical Class in Manufacturing Engineering. Materials Science Forum, 2013, 759, 27-38.	0.3	1
59	Evolution of the Surface Quality in the High Speed Milling of Aerospace Aluminum Alloys. Advanced Science Letters, 2013, 19, 379-383.	0.2	2
60	Principal Components Based Analysis of Surface Quality of Horizontal Turned Samples. Advanced Science Letters, 2013, 19, 363-368.	0.2	2
61	Parametric Potential Model for Determining the Microgeometrical Deviations of Horizontally Dry-Turned UNS A97075 (Al–Zn) Alloy. Advanced Science Letters, 2013, 19, 731-735.	0.2	12
62	Roughness Based Analysis of the Influence of Tool Coating in the Dry Turning of UNS R56400 Ti Alloy. Applied Mechanics and Materials, 2012, 152-154, 647-652.	0.2	3
63	Using Image Analysis Techniques for Single Evaluation of the Chip Shrinkage Factor in Orthogonal Cutting Process. Key Engineering Materials, 2012, 504-506, 1329-1334.	0.4	7
64	Analysis of the elements of secondary adhesion wear in dry turning of aluminum alloys. , 2012, , .		0
65	Digital modeling of end-mill cutting tools for FEM applications from the active cutting contour. , 2012, , .		0
66	Image Based Analysis Evaluation of the Elements of Secondary Adhesion Wear in Dry Turning of Aluminum Alloys. Advanced Materials Research, 2012, 498, 133-138.	0.3	6
67	Strategy Games Applied to the Teaching of Plant Engineering. Materials Science Forum, 2011, 692, 99-103.	0.3	1
68	SOM-SEM-EDS Identification of Tool Wear Mechanisms in the Dry-Machining of Aerospace Titanium Alloys. Advanced Materials Research, 2010, 107, 77-82.	0.3	10
69	Low Environmental Impact Machining Processes of Composite Materials Applied to the Aerospace Sector. Advanced Materials Research, 2010, 107, 15-19.	0.3	3
70	Identification, Analysis and Evolution of the Mechanisms of Wear for Secondary Adhesion for Dry Turning Processes of Al-Cu Alloys. Advanced Materials Research, 2010, 107, 141-146.	0.3	10
71	A Comparative Study of Different Contour Machining Processes of UNS A92024-T3 Alloy. , 2009, , .		0
72	A SEM and EDS based Study of the Microstructural Modifications of Turning Inserts in the Dry Machining of Ti6Al4V Alloy. , 2009, , .		12

#	Article	IF	Citations
73	Surface Finishing—Chip Arrangement Relationship in the Dry Turning of Aerospace Titanium Alloys. , 2009, , .		0
74	Analysis of the Influence of Thermal Treatment on the Dry Turning of Al-Cu Alloys. , 2009, , .		1
75	CAL-CBT Based Virtual Learning and Training in Machining Engineering. A Case Study: CNC Lathe. Materials Science Forum, 0, 625, 19-28.	0.3	3
76	Sustainable Manufacturing in Aerospace Industry – Analysis of the Viability of Intermediate Stages Elimination in Sheet Processing. Advanced Materials Research, 0, 107, 9-14.	0.3	10
77	Implementation of "Research Works Based Learning―to the Manufacturing with Material Removal's Teaching Process. Materials Science Forum, 0, 692, 50-57.	0.3	O
78	An XPS Study of the Stratified Built-up Layers Developed onto the Tool Surface in the Dry Drilling of Ti Alloys. Advanced Materials Research, 0, 223, 564-572.	0.3	3
79	Digital Modeling of End-Mill Cutting Tools for FEM Applications from the Active Cutting Contour. Advanced Materials Research, 0, 498, 61-66.	0.3	4
80	Cutting Speed-Feed Based Parametric Model for Macro-Geometrical Deviations in the Dry Turning of UNS A92024 Al-Cu Alloys. Key Engineering Materials, 0, 504-506, 1311-1316.	0.4	9
81	A Study of Macrogeometrical Deviations in the Dry Turning of UNS R56400 Ti Alloy. Applied Mechanics and Materials, 0, 152-154, 613-617.	0.2	4
82	Cutting Forces Prediction in the Dry Slotting of Aluminium Stacks. Materials Science Forum, 0, 797, 47-52.	0.3	1
83	A Single Students' Experience for Visualizing Completely a Semester Subject. Materials Science Forum, 0, 853, 1-6.	0.3	O
84	Study of the FDM Parameters of the ABS Parts in the Surface Quality after Machining Operations. Key Engineering Materials, 0, 813, 203-208.	0.4	6
85	Machining of Al-Cu and Al-Zn Alloys for Aeronautical Components. , 0, , .		0