Lilong Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1621933/publications.pdf

Version: 2024-02-01

567281 677142 22 557 15 22 citations h-index g-index papers 22 22 22 762 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Stimuli Responsive Nanoparticles for Controlled Anti-cancer Drug Release. Current Medicinal Chemistry, 2018, 25, 1837-1866.	2.4	64
2	Fully biodegradable antibacterial hydrogels via thiol–ene "click―chemistry. Polymer Chemistry, 2014, 5, 4002-4008.	3.9	53
3	Metal and light free "click―hydrogels for prevention of post-operative peritoneal adhesions. Polymer Chemistry, 2014, 5, 2018-2026.	3.9	50
4	Poly-tetrahydropyrimidine Antibacterial Hydrogel with Injectability and Self-Healing Ability for Curing the Purulent Subcutaneous Infection. ACS Applied Materials & Samp; Interfaces, 2020, 12, 50236-50247.	8.0	48
5	Facile fabrication of ultrathin antibacterial hydrogel films via layer-by-layer "click―chemistry. Polymer Chemistry, 2014, 5, 6489-6494.	3.9	46
6	Facile preparation of shell crosslinked micelles for redox-responsive anticancer drug release. RSC Advances, 2014, 4, 4177-4180.	3.6	37
7	Reductively and hydrolytically dual degradable nanoparticles by "click―crosslinking of a multifunctional diblock copolymer. Polymer Chemistry, 2013, 4, 1657.	3.9	36
8	Facile fabrication of reduction-responsive nanocarriers for controlled drug release. Polymer Chemistry, 2014, 5, 4879-4883.	3.9	34
9	A facile strategy to prepare redox-responsive amphiphilic PEGylated prodrug with high drug loading content and low critical micelle concentration. Biomaterials Science, 2014, 2, 1367-1376.	5.4	30
10	Dynamic Covalent Câ•€ Bond, Cross-Linked, Injectable, and Self-Healable Hydrogels via Knoevenagel Condensation. Biomacromolecules, 2020, 21, 1234-1242.	5.4	22
11	Light-assisted preparation of a cyclodextrin-based chiral stationary phase and its separation performance in liquid chromatography. New Journal of Chemistry, 2018, 42, 1115-1120.	2.8	20
12	Injectable Schiff base polysaccharide hydrogels for intraocular drug loading and release. Journal of Biomedical Materials Research - Part A, 2019, 107, 1909-1916.	4.0	17
13	Injectable thiolâ€epoxy "click―hydrogels. Journal of Polymer Science Part A, 2016, 54, 2651-2655.	2.3	16
14	Diazoresin modified monodisperse porous poly(glycidylmethacrylate-co-divinylbenzene) microspheres as the stationary phase for high performance liquid chromatography. New Journal of Chemistry, 2017, 41, 4637-4643.	2.8	15
15	Chitosan composite hydrogels crossâ€inked by multifunctional diazo resin as antibacterial dressings for improved wound healing. Journal of Biomedical Materials Research - Part A, 2020, 108, 1890-1898.	4.0	15
16	Preparation of morphology-controllable PGMA-DVB microspheres by introducing Span 80 into seed emulsion polymerization. RSC Advances, 2018, 8, 2593-2598.	3.6	14
17	An injectable drug-loaded hydrogel using a "clickable―amphiphilic triblock copolymer as a precursor. Polymer Chemistry, 2015, 6, 8240-8243.	3.9	13
18	Injectable poly(ethylene glycol) hydrogels for sustained doxorubicin release. Polymers for Advanced Technologies, 2017, 28, 35-40.	3.2	13

#	Article	IF	CITATION
19	Injectable camptothecin conjugated hydrogels with simultaneous drug release and degradation. RSC Advances, 2016, 6, 94661-94668.	3.6	9
20	Fabrication and study of superficially porous core-shell SiO ₂ @SiO ₂ microspheres. Ferroelectrics, 2018, 530, 45-50.	0.6	2
21	Mild polyaddition and polyalkylation based on the carbon–carbon bond formation reaction of active methylene. RSC Advances, 2019, 9, 40455-40461.	3.6	2
22	Novel triple responsive polybenzimidazole synthesized <i>via</i> amine-ene Michael addition. New Journal of Chemistry, 2018, 42, 11396-11403.	2.8	1