
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1621878/publications.pdf Version: 2024-02-01

Νιίνο Βλνόεισλ

#	Article	IF	CITATIONS
1	GNPS Dashboard: collaborative exploration of mass spectrometry data in the web browser. Nature Methods, 2022, 19, 134-136.	9.0	35
2	Proteomics Standards Initiative's ProForma 2.0: Unifying the Encoding of Proteoforms and Peptidoforms. Journal of Proteome Research, 2022, 21, 1189-1195.	1.8	14
3	Index-based, High-dimensional, Cosine Threshold Querying with Optimality Guarantees. Theory of Computing Systems, 2021, 65, 42-83.	0.7	2
4	Data Management of Sensitive Human Proteomics Data: Current Practices, Recommendations, and Perspectives for the Future. Molecular and Cellular Proteomics, 2021, 20, 100071.	2.5	25
5	A Multi-Omics Characterization of the Natural Product Potential of Tropical Filamentous Marine Cyanobacteria. Marine Drugs, 2021, 19, 20.	2.2	19
6	Open Science Resources for the Mass Spectrometry-Based Analysis of SARS-CoV-2. Journal of Proteome Research, 2021, 20, 1464-1475.	1.8	11
7	Universal Spectrum Identifier for mass spectra. Nature Methods, 2021, 18, 768-770.	9.0	47
8	Quick-start infrastructure for untargeted metabolomics analysis in GNPS. Nature Metabolism, 2021, 3, 880-882.	5.1	11
9	A proteomics sample metadata representation for multiomics integration and big data analysis. Nature Communications, 2021, 12, 5854.	5.8	45
10	Progress Identifying and Analyzing the Human Proteome: 2021ÂMetrics from the HUPO Human Proteome Project. Journal of Proteome Research, 2021, 20, 5227-5240.	1.8	30
11	The ProteomeXchange consortium in 2020: enabling â€~big data' approaches in proteomics. Nucleic Acids Research, 2020, 48, D1145-D1152.	6.5	491
12	Untargeted mass spectrometry-based metabolomics approach unveils molecular changes in raw and processed foods and beverages. Food Chemistry, 2020, 302, 125290.	4.2	52
13	Mass spectrometry searches using MASST. Nature Biotechnology, 2020, 38, 23-26.	9.4	160
14	A high-stringency blueprint of the human proteome. Nature Communications, 2020, 11, 5301.	5.8	152
15	Feature-based molecular networking in the GNPS analysis environment. Nature Methods, 2020, 17, 905-908.	9.0	650
16	MassIVE.quant: a community resource of quantitative mass spectrometry–based proteomics datasets. Nature Methods, 2020, 17, 981-984.	9.0	66
17	Research on the Human Proteome Reaches a Major Milestone: >90% of Predicted Human Proteins Now Credibly Detected, According to the HUPO Human Proteome Project. Journal of Proteome Research, 2020, 19, 4735-4746.	1.8	38
18	ReDU: a framework to find and reanalyze public mass spectrometry data. Nature Methods, 2020, 17, 901-904.	9.0	79

#	Article	IF	CITATIONS
19	Insights from the First Phosphopeptide Challenge of the MS Resource Pillar of the HUPO Human Proteome Project. Journal of Proteome Research, 2020, 19, 4754-4765.	1.8	7
20	Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nature Protocols, 2020, 15, 1954-1991.	5.5	344
21	Human Proteome Project Mass Spectrometry Data Interpretation Guidelines 3.0. Journal of Proteome Research, 2019, 18, 4108-4116.	1.8	82
22	Molecular and Microbial Microenvironments in Chronically Diseased Lungs Associated with Cystic Fibrosis. MSystems, 2019, 4, .	1.7	23
23	Neutrophilic proteolysis in the cystic fibrosis lung correlates with a pathogenic microbiome. Microbiome, 2019, 7, 23.	4.9	53
24	Interactome Rewiring Following Pharmacological Targeting of BET Bromodomains. Molecular Cell, 2019, 73, 621-638.e17.	4.5	135
25	Expanding the Use of Spectral Libraries in Proteomics. Journal of Proteome Research, 2018, 17, 4051-4060.	1.8	47
26	ProteinExplorer: A Repository-Scale Resource for Exploration of Protein Detection in Public Mass Spectrometry Data Sets. Journal of Proteome Research, 2018, 17, 4227-4234.	1.8	17
27	Assembling the Community-Scale Discoverable Human Proteome. Cell Systems, 2018, 7, 412-421.e5.	2.9	136
28	Discovering and linking public omics data sets using the Omics Discovery Index. Nature Biotechnology, 2017, 35, 406-409.	9.4	159
29	Three-Dimensional Microbiome and Metabolome Cartography of a Diseased Human Lung. Cell Host and Microbe, 2017, 22, 705-716.e4.	5.1	111
30	Significance estimation for large scale metabolomics annotations by spectral matching. Nature Communications, 2017, 8, 1494.	5.8	128
31	De Novo MS/MS Sequencing of Native Human Antibodies. Journal of Proteome Research, 2017, 16, 45-54.	1.8	41
32	The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition. Nucleic Acids Research, 2017, 45, D1100-D1106.	6.5	860
33	Digitizing mass spectrometry data to explore the chemical diversity and distribution of marine cyanobacteria and algae. ELife, 2017, 6, .	2.8	33
34	SweetNET: A Bioinformatics Workflow for Glycopeptide MS/MS Spectral Analysis. Journal of Proteome Research, 2016, 15, 2826-2840.	1.8	49
35	Identifying Urinary and Serum Exosome Biomarkers for Radiation Exposure Using a Data Dependent Acquisition and SWATH-MS Combined Workflow. International Journal of Radiation Oncology Biology Physics, 2016, 96, 566-577.	0.4	29
36	Multi-species Identification of Polymorphic Peptide Variants via Propagation in Spectral Networks. Molecular and Cellular Proteomics, 2016, 15, 3501-3512.	2.5	6

#	Article	IF	CITATIONS
37	Data Independent Acquisition analysis in ProHits 4.0. Journal of Proteomics, 2016, 149, 64-68.	1.2	66
38	Mass Spectrometry-Based Visualization of Molecules Associated with Human Habitats. Analytical Chemistry, 2016, 88, 10775-10784.	3.2	44
39	Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nature Biotechnology, 2016, 34, 828-837.	9.4	2,802
40	Lifestyle chemistries from phones for individual profiling. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7645-E7654.	3.3	55
41	SPLASH, a hashed identifier for mass spectra. Nature Biotechnology, 2016, 34, 1099-1101.	9.4	61
42	On the privacy risks of sharing clinical proteomics data. AMIA Summits on Translational Science Proceedings, 2016, 2016, 122-31.	0.4	3
43	Neuropeptidomics Mass Spectrometry Reveals Signaling Networks Generated by Distinct Protease Pathways in Human Systems. Journal of the American Society for Mass Spectrometry, 2015, 26, 1970-1980.	1.2	23
44	The Generating Function Approach for Peptide Identification in Spectral Networks. Journal of Computational Biology, 2015, 22, 353-366.	0.8	5
45	Molecular cartography of the human skin surface in 3D. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2120-9.	3.3	288
46	Molecular Networking and Pattern-Based Genome Mining Improves Discovery of Biosynthetic Gene Clusters and their Products from Salinispora Species. Chemistry and Biology, 2015, 22, 460-471.	6.2	150
47	MSPLIT-DIA: sensitive peptide identification for data-independent acquisition. Nature Methods, 2015, 12, 1106-1108.	9.0	113
48	MixGF: Spectral Probabilities for Mixture Spectra from more than One Peptide. Molecular and Cellular Proteomics, 2014, 13, 3688-3697.	2.5	17
49	The mzTab Data Exchange Format: Communicating Mass-spectrometry-based Proteomics and Metabolomics Experimental Results to a Wider Audience. Molecular and Cellular Proteomics, 2014, 13, 2765-2775.	2.5	130
50	ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nature Biotechnology, 2014, 32, 223-226.	9.4	2,505
51	Proteome Informatics Research Group (iPRG)_2012: A Study on Detecting Modified Peptides in a Complex Mixture. Molecular and Cellular Proteomics, 2014, 13, 360-371.	2.5	20
52	Automated Genome Mining of Ribosomal Peptide Natural Products. ACS Chemical Biology, 2014, 9, 1545-1551.	1.6	133
53	Combinatorial Approach for Large-scale Identification of Linked Peptides from Tandem Mass Spectrometry Spectra. Molecular and Cellular Proteomics, 2014, 13, 1128-1136.	2.5	19
54	Expanding Proteome Coverage with Orthogonal-specificity α-Lytic Proteases. Molecular and Cellular Proteomics, 2014, 13, 823-835.	2.5	54

#	Article	IF	CITATIONS
55	A Turn-Key Approach for Large-Scale Identification of Complex Posttranslational Modifications. Journal of Proteome Research, 2014, 13, 1190-1199.	1.8	7
56	Sequencing-Grade <i>De novo</i> Analysis of MS/MS Triplets (CID/HCD/ETD) From Overlapping Peptides. Journal of Proteome Research, 2013, 12, 2846-2857.	1.8	63
57	Spectral Library Generating Function for Assessing Spectrum-Spectrum Match Significance. Journal of Proteome Research, 2013, 12, 3944-3951.	1.8	23
58	Neutron-encoded Signatures Enable Product Ion Annotation From Tandem Mass Spectra. Molecular and Cellular Proteomics, 2013, 12, 3812-3823.	2.5	20
59	MS/MS networking guided analysis of molecule and gene cluster families. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2611-20.	3.3	250
60	Accurate Mass Spectrometry Based Protein Quantification via Shared Peptides. Journal of Computational Biology, 2012, 19, 337-348.	0.8	40
61	Shotgun Protein Sequencing with Meta-contig Assembly. Molecular and Cellular Proteomics, 2012, 11, 1084-1096.	2.5	25
62	Fast Multi-blind Modification Search through Tandem Mass Spectrometry. Molecular and Cellular Proteomics, 2012, 11, M111.010199.	2.5	143
63	Interkingdom metabolic transformations captured by microbial imaging mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13811-13816.	3.3	220
64	The spectral networks paradigm in high throughput mass spectrometry. Molecular BioSystems, 2012, 8, 2535.	2.9	79
65	Quantitative Proteomics Reveal ATM Kinase-dependent Exchange in DNA Damage Response Complexes. Journal of Proteome Research, 2012, 11, 4983-4991.	1.8	24
66	Peptide Identification by Tandem Mass Spectrometry with Alternate Fragmentation Modes. Molecular and Cellular Proteomics, 2012, 11, 550-557.	2.5	63
67	False discovery rates in spectral identification. BMC Bioinformatics, 2012, 13, S2.	1.2	118
68	Mass spectral molecular networking of living microbial colonies. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1743-52.	3.3	804
69	Advancing Next-Generation Proteomics through Computational Research. Journal of Proteome Research, 2011, 10, 2895-2895.	1.8	4
70	Peptide Identification by Database Search of Mixture Tandem Mass Spectra. Molecular and Cellular Proteomics, 2011, 10, M111.010017.	2.5	25
71	Spectral archives: extending spectral libraries to analyze both identified and unidentified spectra. Nature Methods, 2011, 8, 587-591.	9.0	86
72	Target-Decoy Approach and False Discovery Rate: When Things May Go Wrong. Journal of the American Society for Mass Spectrometry, 2011, 22, 1111-1120.	1.2	134

#	Article	IF	CITATIONS
73	Connecting Chemotypes and Phenotypes of Cultured Marine Microbial Assemblages by Imaging Mass Spectrometry. Angewandte Chemie - International Edition, 2011, 50, 5839-5842.	7.2	53
74	Cover Picture: Connecting Chemotypes and Phenotypes of Cultured Marine Microbial Assemblages by Imaging Mass Spectrometry (Angew. Chem. Int. Ed. 26/2011). Angewandte Chemie - International Edition, 2011, 50, 5773-5773.	7.2	0
75	Protein Identification by Spectral Networks Analysis. Methods in Molecular Biology, 2011, 694, 151-168.	0.4	8
76	Neuropeptidomic Components Generated by Proteomic Functions in Secretory Vesicles for Cell–Cell Communication. AAPS Journal, 2010, 12, 635-645.	2.2	23
77	Peptide Identification from Mixture Tandem Mass Spectra. Molecular and Cellular Proteomics, 2010, 9, 1476-1485.	2.5	67
78	Clostridiolysin S, a Post-translationally Modified Biotoxin from Clostridium botulinum. Journal of Biological Chemistry, 2010, 285, 28220-28228.	1.6	56
79	The Generating Function of CID, ETD, and CID/ETD Pairs of Tandem Mass Spectra: Applications to Database Search. Molecular and Cellular Proteomics, 2010, 9, 2840-2852.	2.5	226
80	Spectral Profiles, a Novel Representation of Tandem Mass Spectra and Their Applications for de Novo Peptide Sequencing and Identification. Molecular and Cellular Proteomics, 2009, 8, 1391-1400.	2.5	37
81	Spectral Dictionaries. Molecular and Cellular Proteomics, 2009, 8, 53-69.	2.5	87
82	Dereplication and de novo sequencing of nonribosomal peptides. Nature Methods, 2009, 6, 596-599.	9.0	81
83	Interpretation of Tandem Mass Spectra Obtained from Cyclic Nonribosomal Peptides. Analytical Chemistry, 2009, 81, 4200-4209.	3.2	83
84	Automated de novo protein sequencing of monoclonal antibodies. Nature Biotechnology, 2008, 26, 1336-1338.	9.4	114
85	Clustering Millions of Tandem Mass Spectra. Journal of Proteome Research, 2008, 7, 113-122.	1.8	230
86	Multi-spectra peptide sequencing and its applications to multistage mass spectrometry. Bioinformatics, 2008, 24, i416-i423.	1.8	25
87	Protein identification by spectral networks analysis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6140-6145.	3.3	157
88	Shotgun Protein Sequencing. Molecular and Cellular Proteomics, 2007, 6, 1123-1134.	2.5	80
89	Shotgun Protein Sequencing by Tandem Mass Spectra Assembly. Analytical Chemistry, 2004, 76, 7221-7233.	3.2	47