List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1621844/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Snakebite envenoming. Nature Reviews Disease Primers, 2017, 3, 17063.	30.5	608
2	Snake venom metalloproteinases:Their role in the pathogenesis of local tissue damage. Biochimie, 2000, 82, 841-850.	2.6	469
3	Phospholipase A2 myotoxins from Bothrops snake venoms. Toxicon, 1995, 33, 1405-1424.	1.6	440
4	Confronting the Neglected Problem of Snake Bite Envenoming: The Need for a Global Partnership. PLoS Medicine, 2006, 3, e150.	8.4	398
5	Skeletal muscle degeneration induced by venom phospholipases A2: insights into the mechanisms of local and systemic myotoxicity. Toxicon, 2003, 42, 915-931.	1.6	381
6	Hemorrhage induced by snake venom metalloproteinases: biochemical and biophysical mechanisms involved in microvessel damage. Toxicon, 2005, 45, 997-1011.	1.6	368
7	Venoms, venomics, antivenomics. FEBS Letters, 2009, 583, 1736-1743.	2.8	309
8	The Global Snake Bite Initiative: an antidote for snake bite. Lancet, The, 2010, 375, 89-91.	13.7	306
9	Snakebite envenoming from a global perspective: Towards an integrated approach. Toxicon, 2010, 56, 1223-1235.	1.6	268
10	An alternative in vitro method for testing the potency of the polyvalent antivenom produced in Costa Rica. Toxicon, 1988, 26, 411-413.	1.6	255
11	Neutralization of proteolytic and hemorrhagic activities of Costa Rican snake venoms by a polyvalent antivenom. Toxicon, 1985, 23, 887-893.	1.6	247
12	Cellular pathology induced by snake venom phospholipase A2 myotoxins and neurotoxins: common aspects of their mechanisms of action. Cellular and Molecular Life Sciences, 2008, 65, 2897-2912.	5.4	230
13	Caprylic acid fractionation of hyperimmune horse plasma: Description of a simple procedure for antivenom production. Toxicon, 1994, 32, 351-363.	1.6	223
14	Phospholipases A2: Unveiling the secrets of a functionally versatile group of snake venom toxins. Toxicon, 2013, 62, 27-39.	1.6	210
15	A new muscle damaging toxin, myotoxin II, from the venom of the snake Bothrops asper (terciopelo). Toxicon, 1989, 27, 725-733.	1.6	206
16	Snake Venomics of the Central American Rattlesnake <i>Crotalus simus</i> and the South American <i>Crotalus durissus</i> Complex Points to Neurotoxicity as an Adaptive Paedomorphic Trend along <i>Crotalus</i> Dispersal in South America. Journal of Proteome Research, 2010, 9, 528-544.	3.7	206
17	Snake Venomics of African Spitting Cobras: Toxin Composition and Assessment of Congeneric Cross-Reactivity of the Pan-African EchiTAb-Plus-ICP Antivenom by Antivenomics and Neutralization Approaches. Journal of Proteome Research, 2011, 10, 1266-1280.	3.7	191
18	Myotoxin II from Bothrops asper (terciopelo) venom is a lysine-49 phospholipase A2. Archives of Biochemistry and Biophysics, 1991, 284, 352-359.	3.0	189

#	Article	IF	CITATIONS
19	Key events in microvascular damage induced by snake venom hemorrhagic metalloproteinases. Journal of Proteomics, 2011, 74, 1781-1794.	2.4	187
20	Neutrophils do not contribute to local tissue damage, but play a key role in skeletal muscle regeneration, in mice injected withBothrops aspersnake venom. Muscle and Nerve, 2003, 28, 449-459.	2.2	183
21	Snake population venomics and antivenomics of Bothrops atrox: Paedomorphism along its transamazonian dispersal and implications of geographic venom variability on snakebite management. Journal of Proteomics, 2011, 74, 510-527.	2.4	181
22	Snake venomics and antivenomics: Proteomic tools in the design and control of antivenoms for the treatment of snakebite envenoming. Journal of Proteomics, 2009, 72, 165-182.	2.4	180
23	Pharmacokinetic-Pharmacodynamic Relationships of Immunoglobulin Therapy for Envenomation. Clinical Pharmacokinetics, 2003, 42, 721-741.	3.5	177
24	Comparative study on coagulant, defibrinating, fibrinolytic and fibrinogenolytic activities of Costa Rican crotaline snake venoms and their neutralization by a polyvalent antivenom. Toxicon, 1989, 27, 841-848.	1.6	175
25	Integrated "omics―profiling indicates that miRNAs are modulators of the ontogenetic venom composition shift in the Central American rattlesnake, Crotalus simus simus. BMC Genomics, 2013, 14, 234.	2.8	164
26	Neutralization of local tissue damage induced by Bothrops asper (terciopelo) snake venom. Toxicon, 1998, 36, 1529-1538.	1.6	161
27	Experimental pathology of local tissue damage induced by Bothrops asper snake venom. Toxicon, 2009, 54, 958-975.	1.6	160
28	Isolation and characterization of a metalloproteinase with weak hemorrhagic activity from the venom of the snake Bothrops asper (terciopelo). Toxicon, 1995, 33, 19-29.	1.6	158
29	Structural and Functional Characterization of BnSP-7, a Lys49 Myotoxic Phospholipase A2 Homologue from Bothrops neuwiedi pauloensis Venom. Archives of Biochemistry and Biophysics, 2000, 378, 201-209.	3.0	158
30	Snake venomics and antivenomics of Bothrops atrox venoms from Colombia and the Amazon regions of Brazil, Perú and Ecuador suggest the occurrence of geographic variation of venom phenotype by a trend towards paedomorphism. Journal of Proteomics, 2009, 73, 57-78.	2.4	155
31	Myotoxic phospholipases A2 in Bothrops snake venoms: Effect of chemical modifications on the enzymatic and pharmacological properties of bothropstoxins from Bothrops jararacussu. Biochimie, 2000, 82, 755-763.	2.6	151
32	Isolation of a myotoxin from Bothrops asper venom: Partial characterization and action on skeletal muscle. Toxicon, 1984, 22, 115-128.	1.6	148
33	Comparative study of the cytolytic activity of myotoxic phospholipases A2 on mouse endothelial (tEnd) and skeletal muscle (C2C12) cells in vitro. Toxicon, 1999, 37, 145-158.	1.6	141
34	Hemorrhage Caused by Snake Venom Metalloproteinases: A Journey of Discovery and Understanding. Toxins, 2016, 8, 93.	3.4	139
35	Snake Venomics and Antivenomics of the Arboreal Neotropical Pitvipers Bothriechis lateralis and Bothriechis schlegelii. Journal of Proteome Research, 2008, 7, 2445-2457.	3.7	137
36	The amino acid sequence of a myotoxic phospholipase from the venom of Bothrops asper. Archives of Biochemistry and Biophysics, 1990, 278, 319-325.	3.0	129

#	Article	IF	CITATIONS
37	Pathogenesis of myonecrosis induced by crude venom and a myotoxin of Bothrops asper. Experimental and Molecular Pathology, 1984, 40, 367-379.	2.1	125
38	Trends in Snakebite Envenomation Therapy: Scientific, Technological and Public Health Considerations. Current Pharmaceutical Design, 2007, 13, 2935-2950.	1.9	125
39	Antivenoms for the treatment of snakebite envenomings: The road ahead. Biologicals, 2011, 39, 129-142.	1.4	125
40	Pros and cons of different therapeutic antibody formats for recombinant antivenom development. Toxicon, 2018, 146, 151-175.	1.6	125
41	Experimental pathophysiology of systemic alterations induced by Bothrops asper snake venom. Toxicon, 2009, 54, 976-987.	1.6	124
42	Increments in serum cytokine and nitric oxide levels in mice injected with Bothrops asper and Bothrops jararaca snake venoms. Toxicon, 2000, 38, 1253-1266.	1.6	123
43	The Need for Full Integration of Snakebite Envenoming within a Global Strategy to Combat the Neglected Tropical Diseases: The Way Forward. PLoS Neglected Tropical Diseases, 2013, 7, e2162.	3.0	123
44	Pathogenic mechanisms underlying adverse reactions induced by intravenous administration of snake antivenoms. Toxicon, 2013, 76, 63-76.	1.6	121
45	A randomized blinded clinical trial of two antivenoms, prepared by caprylic acid or ammonium sulphate fractionation of IgC, in Bothrops and Porthidium snake bites in Colombia: correlation between safety and biochemical characteristics of antivenoms. Toxicon, 1999, 37, 895-908.	1.6	118
46	Local Tissue Damage Induced by BaP1, a Metalloproteinase Isolated from Bothrops asper (Terciopelo) Snake Venom. Experimental and Molecular Pathology, 1995, 63, 186-199.	2.1	117
47	Snake Venomics of the Lesser Antillean Pit Vipers <i>Bothrops caribbaeus</i> and <i>Bothrops lanceolatus</i> : Correlation with Toxicological Activities and Immunoreactivity of a Heterologous Antivenom. Journal of Proteome Research, 2008, 7, 4396-4408.	3.7	116
48	Calcium ion independent membrane leakage induced by phospholipase-like myotoxins. Biochemistry, 1992, 31, 12424-12430.	2.5	114
49	Snake venomics of the South and Central American Bushmasters. Comparison of the toxin composition of Lachesis muta gathered from proteomic versus transcriptomic analysis. Journal of Proteomics, 2008, 71, 46-60.	2.4	114
50	Amino acid sequence and crystal structure of BaP1, a metalloproteinase from Bothrops asper snake venom that exerts multiple tissue-damaging activities. Protein Science, 2009, 12, 2273-2281.	7.6	110
51	Combined venomics, venom gland transcriptomics, bioactivities, and antivenomics of two Bothrops jararaca populations from geographic isolated regions within the Brazilian Atlantic rainforest. Journal of Proteomics, 2016, 135, 73-89.	2.4	110
52	Preclinical Evaluation of the Efficacy of Antivenoms for Snakebite Envenoming: State-of-the-Art and Challenges Ahead. Toxins, 2017, 9, 163.	3.4	109
53	Inhibition of Myotoxic Activity of Bothrops asper Myotoxin II by the Anti-trypanosomal Drug Suramin. Journal of Molecular Biology, 2005, 350, 416-426.	4.2	106
54	Venomic and Antivenomic Analyses of the Central American Coral Snake, <i>Micrurus nigrocinctus</i> (Elapidae). Journal of Proteome Research, 2011, 10, 1816-1827.	3.7	105

#	Article	IF	CITATIONS
55	The effect of myotoxins isolated from Bothrops snake venoms on multilamellar liposomes: relationship to phospholipase A2, anticoagulant and myotoxic activities. Biochimica Et Biophysica Acta - Biomembranes, 1991, 1070, 455-460.	2.6	104
56	Effects of aqueous extract of Casearia sylvestris (Flacourtiaceae) on actions of snake and bee venoms and on activity of phospholipases A2. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2000, 127, 21-30.	1.6	104
57	Inflammatory events induced by Lys-49 and Asp-49 phospholipases A2 isolated from Bothrops asper snake venom: role of catalytic activity. Toxicon, 2005, 45, 335-346.	1.6	104
58	Antivenoms for Snakebite Envenomings. Inflammation and Allergy: Drug Targets, 2011, 10, 369-380.	1.8	104
59	Inhibition of local hemorrhage and dermonecrosis induced by Bothrops asper snake venom: effectiveness of early in situ administration of the peptidomimetic metalloproteinase inhibitor batimastat and the chelating agent CaNa2EDTA American Journal of Tropical Medicine and Hygiene, 2000. 63. 313-319.	1.4	103
60	Increments in cytokines and matrix metalloproteinases in skeletal muscle after injection of tissue-damaging toxins from the venom of the snake <i>Bothrops asper</i> . Mediators of Inflammation, 2002, 11, 121-128.	3.0	102
61	Unveiling the nature of black mamba (Dendroaspis polylepis) venom through venomics and antivenom immunoprofiling: Identification of key toxin targets for antivenom development. Journal of Proteomics, 2015, 119, 126-142.	2.4	102
62	From Fangs to Pharmacology: The Future of Snakebite Envenoming Therapy. Current Pharmaceutical Design, 2016, 22, 5270-5293.	1.9	101
63	Ontogenetic variability of Bothrops atrox and Bothrops asper snake venoms from Colombia. Toxicon, 2003, 42, 405-411.	1.6	99
64	Effectiveness of batimastat, a synthetic inhibitor of matrix metalloproteinases, in neutralizing local tissue damage induced by BaP1, a hemorrhagic metalloproteinase from the venom of the snake Bothrops asper. Biochemical Pharmacology, 2000, 60, 269-274.	4.4	98
65	Dissociation of Enzymatic and Pharmacological Properties of Piratoxins-I and -III, Two Myotoxic Phospholipases A2 from Bothrops pirajai Snake Venom. Archives of Biochemistry and Biophysics, 2001, 387, 188-196.	3.0	98
66	Venomous snakes of Costa Rica: Biological and medical implications of their venom proteomic profiles analyzed through the strategy of snake venomics. Journal of Proteomics, 2014, 105, 323-339.	2.4	97
67	Clinical and laboratory alterations in horses during immunization with snake venoms for the production of polyvalent (Crotalinae) antivenom. Toxicon, 1997, 35, 81-90.	1.6	96
68	Novel insights into capillary vessel basement membrane damage by snake venom hemorrhagic metalloproteinases: A biochemical and immunohistochemical study. Archives of Biochemistry and Biophysics, 2006, 455, 144-153.	3.0	96
69	Profiling the venom gland transcriptomes of Costa Rican snakes by 454 pyrosequencing. BMC Genomics, 2011, 12, 259.	2.8	96
70	Second generation snake antivenomics: Comparing immunoaffinity and immunodepletion protocols. Toxicon, 2012, 60, 688-699.	1.6	96
71	Convergent evolution of pain-inducing defensive venom components in spitting cobras. Science, 2021, 371, 386-390.	12.6	96
72	Structural and Functional Characterization of Myotoxin I, a Lys49 Phospholipase A2 Homologue from Bothrons mogieni (Caissaca) Snake Venom, Archives of Biochemistry and Biophysics, 2000, 373, 7-15	3.0	95

#	Article	IF	CITATIONS
73	Venomics of New World pit vipers: Genus-wide comparisons of venom proteomes across Agkistrodon. Journal of Proteomics, 2014, 96, 103-116.	2.4	94
74	Hyperalgesia induced by Asp49 and Lys49 phospholipases A2 from Bothrops asper snake venom: pharmacological mediation and molecular determinants. Toxicon, 2003, 41, 667-678.	1.6	93
75	Blister formation and skin damage induced by BaP1, a haemorrhagic metalloproteinase from the venom of the snake Bothrops asper. International Journal of Experimental Pathology, 1998, 79, 245-54.	1.3	92
76	Pan-African polyspecific antivenom produced by caprylic acid purification of horse IgG: an alternative to the antivenom crisis in Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2005, 99, 468-475.	1.8	90
77	Immune Response Towards Snake Venoms. Inflammation and Allergy: Drug Targets, 2011, 10, 381-398.	1.8	90
78	Pharmacological study of edema induced by venom of the snake Bothrops asper (terciopelo) in mice. Toxicon, 1995, 33, 31-39.	1.6	89
79	Venoms of Micrurus coral snakes: Evolutionary trends in compositional patterns emerging from proteomic analyses. Toxicon, 2016, 122, 7-25.	1.6	89
80	The paraspecific neutralisation of snake venom induced coagulopathy by antivenoms. Communications Biology, 2018, 1, 34.	4.4	89
81	Systemic and local myotoxicity induced by snake venom group II phospholipases A2: Comparison between crotoxin, crotoxin B and a Lys49 PLA2 homologue. Toxicon, 2008, 51, 80-92.	1.6	88
82	Improving antivenom availability and accessibility: Science, technology, and beyond. Toxicon, 2012, 60, 676-687.	1.6	88
83	Geographic and ontogenic variability in the venom of the neotropical rattlesnake Crotalus durissus: pathophysiological and therapeutic implications. Revista De Biologia Tropical, 2002, 50, 337-46.	0.4	87
84	Chemical modification of histidine and lysine residues of myotoxic phospholipases A2 isolated from Bothrops asper and Bothrops godmani snake venoms: Effects on enzymatic and pharmacological properties. Toxicon, 1997, 35, 241-252.	1.6	86
85	The Phospholipase A2 Homologues of Snake Venoms: Biological Activities and Their Possible Adaptive Roles. Protein and Peptide Letters, 2009, 16, 860-876.	0.9	85
86	Exploring the venom of the forest cobra snake: Toxicovenomics and antivenom profiling of Naja melanoleuca. Journal of Proteomics, 2017, 150, 98-108.	2.4	85
87	Steps to overcome the North–South divide in research relevant to climate change policy and practice. Nature Climate Change, 2017, 7, 21-27.	18.8	84
88	Preclinical assessment of the neutralizing capacity of antivenoms produced in six Latin American countries against medically-relevant Bothrops snake venoms. Toxicon, 2010, 56, 980-989.	1.6	83
89	Skeletal Muscle Necrosis and Regeneration after Injection of BaH1, A Hemorrhagic Metalloproteinase Isolated from the Venom of the Snake Bothrops asper (Terciopelo). Experimental and Molecular Pathology, 1995, 62, 28-41.	2.1	82
90	Structure of a calcium-independent phospholipase-like myotoxic protein fromBothrops aspervenom. Acta Crystallographica Section D: Biological Crystallography, 1995, 51, 311-317.	2.5	81

#	Article	IF	CITATIONS
91	The medical threat of mamba envenoming in sub-Saharan Africa revealed by genus-wide analysis of venom composition, toxicity and antivenomics profiling of available antivenoms. Journal of Proteomics, 2018, 172, 173-189.	2.4	80
92	Isolation and partial characterization of a myotoxin from the venom of the snake Bothrops nummifer. Toxicon, 1986, 24, 885-894.	1.6	79
93	Tissue Localization and Extracellular Matrix Degradation by PI, PII and PIII Snake Venom Metalloproteinases: Clues on the Mechanisms of Venom-Induced Hemorrhage. PLoS Neglected Tropical Diseases, 2015, 9, e0003731.	3.0	79
94	Snake Venomics of Central American Pitvipers: Clues for Rationalizing the Distinct Envenomation Profiles of Atropoides nummifer and Atropoides picadoi. Journal of Proteome Research, 2008, 7, 708-719.	3.7	77
95	Skeletal muscle degeneration and regeneration after injection of bothropstoxin-II, a phospholipase A2 isolated from the venom of the snake Bothrops jararacussu. Experimental and Molecular Pathology, 1991, 55, 217-229.	2.1	76
96	Snake venomics and antivenomics of Bothrops colombiensis, a medically important pitviper of the Bothrops atrox-asper complex endemic to Venezuela: Contributing to its taxonomy and snakebite management. Journal of Proteomics, 2009, 72, 227-240.	2.4	76
97	A Comprehensive View of the Structural and Functional Alterations of Extracellular Matrix by Snake Venom Metalloproteinases (SVMPs): Novel Perspectives on the Pathophysiology of Envenoming. Toxins, 2016, 8, 304.	3.4	76
98	Synergism between Basic Asp49 and Lys49 Phospholipase A2 Myotoxins of Viperid Snake Venom In Vitro and In Vivo. PLoS ONE, 2014, 9, e109846.	2.5	76
99	Neutralization of crotaline snake venoms from Central and South America by antivenoms produced in Brazil and Costa Rica. Toxicon, 2000, 38, 1429-1441.	1.6	75
100	Characterization of â€~basparin A,' a prothrombin-activating metalloproteinase, from the venom of the snake Bothrops asper that inhibits platelet aggregation and induces defibrination and thrombosis. Archives of Biochemistry and Biophysics, 2003, 418, 13-24.	3.0	75
101	Selecting key toxins for focused development of elapid snake antivenoms and inhibitors guided by a Toxicity Score. Toxicon, 2015, 104, 43-45.	1.6	75
102	Changes in myofibrillar components after skeletal muscle necrosis induced by a myotoxin isolated from the venom of the snake Bothrops asper. Experimental and Molecular Pathology, 1990, 52, 25-36.	2.1	74
103	Inflammatory effects of BaP1 a metalloproteinase isolated from Bothrops asper snake venom: Leukocyte recruitment and release of cytokines. Toxicon, 2006, 47, 549-559.	1.6	74
104	Efficacy and safety of two whole IgG polyvalent antivenoms, refined by caprylic acid fractionation with or without Î2-propiolactone, in the treatment of Bothrops asper bites in Colombia. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2006, 100, 1173-1182.	1.8	74
105	Snakebites are associated with poverty, weather fluctuations, and El Niño. Science Advances, 2015, 1, e1500249.	10.3	74
106	Standardization of assays for testing the neutralizing ability of antivenoms. Toxicon, 1990, 28, 1127-1129.	1.6	73
107	Isolation and characterization of synergistic hemorrhagins from the venom of the snake Bothrops asper. Toxicon, 1993, 31, 1137-1150.	1.6	73
108	Purification and characterization of BaH4, a hemorrhagic metalloproteinase from the venom of the snake Bothrops asper. Toxicon, 2000, 38, 63-77.	1.6	73

JOSE M GUTIERREZ

#	Article	IF	CITATIONS
109	Effects of chemical modifications of crotoxin B, the phospholipase A2 subunit of crotoxin from Crotalus durissus terrificus snake venom, on its enzymatic and pharmacological activities. International Journal of Biochemistry and Cell Biology, 2001, 33, 877-888.	2.8	73
110	Immunological profile of antivenoms: Preclinical analysis of the efficacy of a polyspecific antivenom through antivenomics and neutralization assays. Journal of Proteomics, 2014, 105, 340-350.	2.4	73
111	In vivo neutralization of dendrotoxin-mediated neurotoxicity of black mamba venom by oligoclonal human IgG antibodies. Nature Communications, 2018, 9, 3928.	12.8	73
112	Comparison between IgG and F(ab′)2 polyvalent antivenoms: neutralization of systemic effects induced by Bothrops asper venom in mice, extravasation to muscle tissue, and potential for induction of adverse reactions. Toxicon, 2001, 39, 793-801.	1.6	72
113	Bothrops asper and Bothrops jararaca snake venoms trigger microbicidal functions of peritoneal leukocytes in vivo. Toxicon, 2001, 39, 1505-1513.	1.6	72
114	Wound Exudate as a Proteomic Window to Reveal Different Mechanisms of Tissue Damage by Snake Venom Toxins. Journal of Proteome Research, 2009, 8, 5120-5131.	3.7	72
115	Isolation of an acidic phospholipase A2 from the venom of the snake Bothrops asper of Costa Rica: Biochemical and toxicological characterizationâ~†. Biochimie, 2010, 92, 273-283.	2.6	72
116	Proteomic and biological characterization of the venom of the redtail coral snake, Micrurus mipartitus (Elapidae), from Colombia and Costa Rica. Journal of Proteomics, 2011, 75, 655-667.	2.4	72
117	Myonecrosis induced in mice by a basic myotoxin isolated from the venom of the snake Bothrops nummifer (jumping viper) from Costa Rica. Toxicon, 1989, 27, 735-745.	1.6	71
118	A randomized double-blind clinical trial of two antivenoms in patients bitten by Bothrops atrox in Colombia. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1996, 90, 696-700.	1.8	71
119	Effect of the metalloproteinase inhibitor batimastat in the systemic toxicity induced by Bothrops asper snake venom: understanding the role of metalloproteinases in envenomation. Toxicon, 2004, 43, 417-424.	1.6	71
120	Activation of cellular functions in macrophages by venom secretory Asp-49 and Lys-49 phospholipases A2. Toxicon, 2005, 46, 523-532.	1.6	71
121	Role of Collagens and Perlecan in Microvascular Stability: Exploring the Mechanism of Capillary Vessel Damage by Snake Venom Metalloproteinases. PLoS ONE, 2011, 6, e28017.	2.5	71
122	Bothrops aspersnake venom and its metalloproteinase BaP–1 activate the complement system. Role in leucocyte recruitment. Mediators of Inflammation, 2000, 9, 213-221.	3.0	70
123	Snake venomics and antivenomics of Protobothrops mucrosquamatus and Viridovipera stejnegeri from Taiwan: Keys to understand the variable immune response in horses. Journal of Proteomics, 2012, 75, 5628-5645.	2.4	70
124	Toxicovenomics and antivenom profiling of the Eastern green mamba snake (Dendroaspis angusticeps) Tj ETQq(0.0,rgBT 2:4	/Oyerlock 10
125	Pathological changes induced by BaH1, a hemorrhagic proteinase isolated from Bothrops asper (Terciopelo) snake venom, on mouse capillary blood vessels. Toxicon, 1994, 32, 977-987.	1.6	69

126Inflammation induced by Bothrops asper venom: release of proinflammatory cytokines and
eicosanoids, and role of adhesion molecules in leukocyte infiltration. Toxicon, 2005, 46, 806-813.1.669

#	Article	IF	CITATIONS
127	Isolation and biochemical, functional and structural characterization of a novel l-amino acid oxidase from Lachesis muta snake venom. Toxicon, 2012, 60, 1263-1276.	1.6	69
128	Differential procoagulant effects of saw-scaled viper (Serpentes: Viperidae: Echis) snake venoms on human plasma and the narrow taxonomic ranges of antivenom efficacies. Toxicology Letters, 2017, 280, 159-170.	0.8	69
129	Isolation of basic myotoxins from Bothrops Moojeni and Bothrops Atrox snake venoms. Toxicon, 1990, 28, 1137-1146.	1.6	68
130	Biochemical characterization and pharmacological properties of a phospholipase A2 myotoxin inhibitor from the plasma of the snake <i>Bothrops asper</i> . Biochemical Journal, 1997, 326, 853-859.	3.7	68
131	Comparative study of the efficacy and safety of two polyvalent, caprylic acid fractionated [IgG and F(ab′)2] antivenoms, in Bothrops asper bites inÂColombia. Toxicon, 2012, 59, 344-355.	1.6	68
132	Assessment of the viral safety of antivenoms fractionated from equine plasma. Biologicals, 2004, 32, 115-128.	1.4	67
133	Stability, distribution and use of antivenoms for snakebite envenomation in Latin America: Report of a workshop. Toxicon, 2009, 53, 625-630.	1.6	67
134	Preclinical assessment of the efficacy of a new antivenom (EchiTAb-Plus-ICP®) for the treatment of viper envenoming in sub-Saharan Africa. Toxicon, 2010, 55, 369-374.	1.6	67
135	Comparative proteomic analysis of the venom of the taipan snake, Oxyuranus scutellatus, from Papua New Guinea and Australia: Role of neurotoxic and procoagulant effects in venom toxicity. Journal of Proteomics, 2012, 75, 2128-2140.	2.4	67
136	Intraspecies variation in the venom of the rattlesnake Crotalus simus from Mexico: Different expression of crotoxin results in highly variable toxicity in the venoms of three subspecies. Journal of Proteomics, 2013, 87, 103-121.	2.4	67
137	Phylovenomics of Daboia russelii across the Indian subcontinent. Bioactivities and comparative in vivo neutralization and in vitro third-generation antivenomics of antivenoms against venoms from India, Bangladesh and Sri Lanka. Journal of Proteomics, 2019, 207, 103443.	2.4	67
138	Pharmacological modulation of edema induced by Lys-49 and Asp-49 myotoxic phospholipases A2 isolated from the venom of the snake Bothrops asper (terciopelo). Toxicon, 1998, 36, 1861-1869.	1.6	66
139	Snake venom phospholipase A2s (Asp49 and Lys49) induce mechanical allodynia upon peri-sciatic administration: involvement of spinal cord glia, proinflammatory cytokines and nitric oxide. Pain, 2004, 108, 180-191.	4.2	66
140	Calcium imaging of muscle cells treated with snake myotoxins reveals toxin synergism and presence of acceptors. Cellular and Molecular Life Sciences, 2009, 66, 1718-1728.	5.4	66
141	Bothrops snake myotoxins induce a large efflux of ATP and potassium with spreading of cell damage and pain. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14140-14145.	7.1	66
142	Assessing the preclinical efficacy of antivenoms: From the lethality neutralization assay to antivenomics. Toxicon, 2013, 69, 168-179.	1.6	66
143	Phospholipases A2 from viperidae snake venoms: how do they induce skeletal muscle damage?. Acta Chimica Slovenica, 2011, 58, 647-59.	0.6	66
144	Thrombocytopenia and platelet hypoaggregation induced by Bothrops asper snake venom. Thrombosis and Haemostasis, 2005, 94, 123-131.	3.4	65

#	Article	IF	CITATIONS
145	Skin Pathology Induced by Snake Venom Metalloproteinase: Acute Damage, Revascularization, and Re-epithelization in a Mouse Ear Model. Journal of Investigative Dermatology, 2008, 128, 2421-2428.	0.7	65
146	Impact of Regional Variation in <i>Bothrops asper</i> Snake Venom on the Design of Antivenoms: Integrating Antivenomics and Neutralization Approaches. Journal of Proteome Research, 2010, 9, 564-577.	3.7	65
147	Characterization of the local tissue damage induced by LHF-II, a metalloproteinase with weak hemorrhagic activity isolated from Lachesis muta muta snake venom. Toxicon, 1999, 37, 1297-1312.	1.6	64
148	Pathological alterations induced by neuwiedase, a metalloproteinase isolated from Bothrops neuwiedi snake venom. Biochimie, 2001, 83, 471-479.	2.6	64
149	Current technology for the industrial manufacture of snake antivenoms. Toxicon, 2018, 151, 63-73.	1.6	64
150	Varespladib (LY315920) and Methyl Varespladib (LY333013) Abrogate or Delay Lethality Induced by Presynaptically Acting Neurotoxic Snake Venoms. Toxins, 2020, 12, 131.	3.4	64
151	Neurotoxicity and Other Pharmacological Activities of the Snake Venom Phospholipase A2 OS2:  The N-Terminal Region Is More Important Than Enzymatic Activity. Biochemistry, 2006, 45, 5800-5816.	2.5	63
152	Pharmacological modulation of hyperalgesia induced by Bothrops asper (terciopelo) snake venom. Toxicon, 2001, 39, 1173-1181.	1.6	62
153	Delayed LY333013 (Oral) and LY315920 (Intravenous) Reverse Severe Neurotoxicity and Rescue Juvenile Pigs from Lethal Doses of Micrurus fulvius (Eastern Coral Snake) Venom. Toxins, 2018, 10, 479.	3.4	62
154	Crystal Structure of Myotoxin II, a Monomeric Lys49-Phospholipase A2 Homologue Isolated from the Venom of Cerrophidion (Bothrops) godmani. Archives of Biochemistry and Biophysics, 1999, 366, 177-182.	3.0	61
155	Neutralization of four Peruvian Bothrops sp. snake venoms by polyvalent antivenoms produced in Perú and Costa Rica: preclinical assessment. Acta Tropica, 2005, 93, 85-95.	2.0	61
156	Delayed Oral LY333013 Rescues Mice from Highly Neurotoxic, Lethal Doses of Papuan Taipan (Oxyuranus) Tj ETG	Qq <u>Q</u> Q0 rg	BT/Overlock
157	Pulmonary hemorrhage induced by jararhagin, a metalloproteinase from Bothrops jararaca snake venom. Toxicology and Applied Pharmacology, 2003, 193, 17-28.	2.8	60
158	A multicomponent strategy to improve the availability of antivenom for treating snakebite envenoming. Bulletin of the World Health Organization, 2014, 92, 526-532.	3.3	60
159	Snake venomics of monocled cobra (Naja kaouthia) and investigation of human IgG response against venom toxins. Toxicon, 2015, 99, 23-35.	1.6	60
160	Peptidomimetic hydroxamate metalloproteinase inhibitors abrogate local and systemic toxicity induced by Echis ocellatus (saw-scaled) snake venom. Toxicon, 2017, 132, 40-49.	1.6	60
161	Characterization of Aspercetin, a Platelet Aggregating Component from the Venom of the Snake Bothrops asper which Induces Thrombocytopenia and Potentiates Metalloproteinase-induced Hemorrhage. Thrombosis and Haemostasis, 2001, 85, 710-715.	3.4	59
162	Snake venomics of Micrurus alleni and Micrurus mosquitensis from the Caribbean region of Costa Rica reveals two divergent compositional patterns in New World elapids. Toxicon, 2015, 107, 217-233.	1.6	59

#	Article	IF	CITATIONS
163	A Cellular Deficiency of Gangliosides Causes Hypersensitivity to Clostridium perfringens Phospholipase C. Journal of Biological Chemistry, 2005, 280, 26680-26689.	3.4	58
164	Innovative Immunization Strategies for Antivenom Development. Toxins, 2018, 10, 452.	3.4	58
165	Local effects induced by coral snake venoms: Evidence of myonecrosis after experimental inoculations of venoms from five species. Toxicon, 1983, 21, 777-783.	1.6	57
166	Skeletal muscle regeneration after myonecrosis induced by crude venom and a myotoxin from the snake Bothrops asper (Fer-de-Lance). Toxicon, 1984, 22, 719-731.	1.6	57
167	Comparative study on the ability of IgG and Fab sheep antivenoms to neutralize local hemorrhage, edema and myonecrosis induced by Bothrops asper (terciopelo) snake venom. Toxicon, 2000, 38, 233-244.	1.6	57
168	Characterization of events associated with apoptosis/anoikis induced by snake venom metalloproteinase BaP1 on human endothelial cells. Journal of Cellular Biochemistry, 2005, 94, 520-528.	2.6	57
169	Role of the snake venom toxin jararhagin in proinflammatory pathogenesis: In vitro and in vivo gene expression analysis of the effects of the toxin. Archives of Biochemistry and Biophysics, 2005, 441, 1-15.	3.0	57
170	Using Geographical Information Systems to Identify Populations in Need of Improved Accessibility to Antivenom Treatment for Snakebite Envenoming in Costa Rica. PLoS Neglected Tropical Diseases, 2013, 7, e2009.	3.0	57
171	Pathogenesis of dermonecrosis induced by venom of the spitting cobra, Naja nigricollis: An experimental study in mice. Toxicon, 2016, 119, 171-179.	1.6	57
172	Systemic cytokine response in children bitten by snakes in Costa Rica. Pediatric Emergency Care, 2001, 17, 425-429.	0.9	56
173	Snake venomics of Lachesis muta rhombeata and genus-wide antivenomics assessment of the paraspecific immunoreactivity of two antivenoms evidence the high compositional and immunological conservation across Lachesis. Journal of Proteomics, 2013, 89, 112-123.	2.4	56
174	Snake Venomics of <i>Bothriechis nigroviridis</i> Reveals Extreme Variability among Palm Pitviper Venoms: Different Evolutionary Solutions for the Same Trophic Purpose. Journal of Proteome Research, 2010, 9, 4234-4241.	3.7	55
175	Isolation and characterization of basic myotoxic phospholipases A2 from Bothrops godmani (Godman's pit viper) snake venom. Archives of Biochemistry and Biophysics, 1992, 298, 135-142.	3.0	54
176	Ultrastructural alterations in mouse capillary blood vessels after experimental injection of venom from the snake Bothrops asper (Terciopelo). Experimental and Molecular Pathology, 1992, 57, 124-133.	2.1	54
177	Effect of Preservatives on IgG Aggregation, Complement-activating Effect and Hypotensive Activity of Horse Polyvalent Antivenom Used in Snakebite Envenomation. Biologicals, 2002, 30, 143-151.	1.4	54
178	Snake venom components enhance pain upon subcutaneous injection: an initial examination of spinal cord mediators. Pain, 2004, 111, 65-76.	4.2	54
179	Pharmacological activities of a toxic phospholipase a isolated from the venom of the snake Bothrops Asper. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1986, 84, 159-164.	0.2	53
180	Omics Meets Biology: Application to the Design and Preclinical Assessment of Antivenoms. Toxins, 2014, 6, 3388-3405.	3.4	52

#	Article	IF	CITATIONS
181	Global Availability of Antivenoms: The Relevance of Public Manufacturing Laboratories. Toxins, 2019, 11, 5.	3.4	52
182	Ability of six Latin American antivenoms to neutralize the venom of mapanáequis (Bothrops atrox) from Antioquia and Chocó(Colombia). Toxicon, 1995, 33, 809-815.	1.6	51
183	Skeletal muscle necrosis and regeneration after injection of Thalassophryne nattereri (niquim) fish venom in mice. International Journal of Experimental Pathology, 2001, 82, 55-64.	1.3	51
184	High-Resolution Crystal Structure of the Snake Venom Metalloproteinase BaP1 Complexed with a Peptidomimetic: Insight into Inhibitor Binding. Biochemistry, 2009, 48, 6166-6174.	2.5	51
185	Backbone Flexibility Controls the Activity and Specificity of a Proteinâ^'Protein Interface: Specificity in Snake Venom Metalloproteases. Journal of the American Chemical Society, 2010, 132, 10330-10337.	13.7	51
186	Assessment of snake antivenom purity by comparing physicochemical and immunochemical methods. Biologicals, 2013, 41, 93-97.	1.4	51
187	Biochemical and pharmacological similarities between the venoms of newborn Crotalus durissus durissus durissus terrificus rattlesnakes. Toxicon, 1991, 29, 1273-1277.	1.6	50
188	Antivenomic Assessment of the Immunological Reactivity of EchiTAb-Plus-ICP, an Antivenom for the Treatment of Snakebite Envenoming in Sub-Saharan Africa. American Journal of Tropical Medicine and Hygiene, 2010, 82, 1194-1201.	1.4	50
189	Venomics and antivenomics of Bothrops erythromelas from five geographic populations within the Caatinga ecoregion of northeastern Brazil. Journal of Proteomics, 2015, 114, 93-114.	2.4	50
190	Neutralizing properties of LY315920 toward snake venom group I and II myotoxic phospholipases A2. Toxicon, 2019, 157, 1-7.	1.6	50
191	Experimental myonecrosis induced by the venoms of South American Micrurus (coral snakes). Toxicon, 1992, 30, 1299-1302.	1.6	49
192	Activity of hemorrhagic metalloproteinase BaH-1 and myotoxin II from Bothrops asper snake venom on capillary endothelial cells in vitro. Toxicon, 1994, 32, 505-510.	1.6	49
193	Structural basis for phospholipase A2-like toxin inhibition by the synthetic compound Varespladib (LY315920). Scientific Reports, 2019, 9, 17203.	3.3	49
194	Biological and biochemical activities of Vipera berus (European viper) venom. Toxicon, 1993, 31, 743-753.	1.6	48
195	Preclinical Evaluation of Caprylic Acid-Fractionated IgG Antivenom for the Treatment of Taipan (Oxyuranus scutellatus) Envenoming in Papua New Guinea. PLoS Neglected Tropical Diseases, 2011, 5, e1144.	3.0	48
196	Snake venomics of the pit vipers Porthidium nasutum, Porthidium ophryomegas, and Cerrophidion godmani from Costa Rica: Toxicological and taxonomical insights. Journal of Proteomics, 2012, 75, 1675-1689.	2.4	48
197	Viperid Envenomation Wound Exudate Contributes to Increased Vascular Permeability via a DAMPs/TLR-4 Mediated Pathway. Toxins, 2016, 8, 349.	3.4	48
198	Ontogenetic changes in the venom of the snake Lachesis muta stenophrys (bushmaster) from Costa Rica. Toxicon, 1990, 28, 419-426.	1.6	47

#	Article	IF	CITATIONS
199	Neutralization, by a monospecific Bothrops lanceolatus antivenom, of toxic activities induced by homologous and heterologous BothıÌrops snake venoms. Toxicon, 1999, 37, 551-557.	1.6	47
200	Identification of residues critical for toxicity in Clostridium perfringens phospholipase C, the key toxin in gas gangrene. FEBS Journal, 2000, 267, 5191-5197.	0.2	47
201	Snake venom metalloproteinases: structure/function relationships studies using monoclonal antibodies. Toxicon, 2003, 42, 801-808.	1.6	47
202	A Lys49 phospholipase A2 homologue from Bothrops asper snake venom induces proliferation, apoptosis and necrosis in a lymphoblastoid cell line. Toxicon, 2005, 45, 651-660.	1.6	47
203	Cytotoxicity induced in myotubes by a Lys49 phospholipase A2 homologue from the venom of the snake Bothrops asper: Evidence of rapid plasma membrane damage and a dual role for extracellular calcium. Toxicology in Vitro, 2007, 21, 1382-1389.	2.4	47
204	Role of cyclooxygenases in oedema-forming activity of bothropic venoms. Toxicon, 2007, 49, 670-677.	1.6	47
205	Elapid venom toxins: multiple recruitments of ancient scaffolds. FEBS Journal, 1999, 259, 225-234.	0.2	46
206	Evaluation of antivenoms in the neutralization of hyperalgesia and edema induced by Bothrops jararaca and Bothrops asper snake venoms. Brazilian Journal of Medical and Biological Research, 2002, 35, 1221-1228.	1.5	46
207	Factors associated with adverse reactions induced by caprylic acid-fractionated whole IgG preparations: comparison between horse, sheep and camel IgGs. Toxicon, 2005, 46, 775-781.	1.6	46
208	Functional analysis of DM64, an antimyotoxic protein with immunoglobulin-like structure from Didelphis marsupialis serum. FEBS Journal, 2002, 269, 6052-6062.	0.2	45
209	Structural and functional characterization of myotoxin I, a Lys49 phospholipase A2 homologue from the snake Bothrops atrox. Toxicon, 2004, 44, 91-101.	1.6	45
210	Effects of Bothrops asper Snake Venom on Lymphatic Vessels: Insights into a Hidden Aspect of Envenomation. PLoS Neglected Tropical Diseases, 2008, 2, e318.	3.0	45
211	Current challenges for confronting the public health problem of snakebite envenoming in Central America. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2014, 20, 7.	1.4	45
212	Role of enzymatic activity in muscle damage and cytotoxicity induced by <i>Bothrops asper</i> Asp49 phospholipase A ₂ myotoxins: are there additional effector mechanisms involved?. PeerJ, 2014, 2, e569.	2.0	45
213	Characterization of alpha-Neurotoxin and Phospholipase A2 Activities from Micrurus Venoms. Determination of the Amino Acid Sequence and Receptor-Binding Ability of the Major alpha-Neurotoxin from Micrurus Nigrocinctus Nigrocinctus. FEBS Journal, 1996, 238, 231-239.	0.2	44
214	Hemostatic effects induced by Thalassophryne nattereri fish venom: a model of endothelium-mediated blood flow impairment. Toxicon, 2002, 40, 1141-1147.	1.6	44
215	Preclinical assessment of the ability of polyvalent (Crotalinae) and anticoral (Elapidae) antivenoms produced in Costa Rica to neutralize the venoms of North American snakes. Toxicon, 2003, 41, 851-860.	1.6	44
216	Immunoglobulin G and F(ab′)2 polyvalent antivenoms do not differ in their ability to neutralize hemorrhage, edema and myonecrosis induced by Bothrops asper (terciopelo) snake venom. Toxicon, 1997, 35, 1627-1637.	1.6	43

#	Article	IF	CITATIONS
217	Comparative study of the cytolytic activity of snake venoms from African spitting cobras (Naja spp.,) Tj ETQq1 1	0.784314 1.6	4 rg ₄₃ T /Over
218	Proteomic analysis of Bothrops pirajai snake venom and characterization of BpirMP, a new P-I metalloproteinase. Journal of Proteomics, 2013, 80, 250-267.	2.4	43
219	Citrate inhibition of snake venom proteases. Toxicon, 1998, 36, 1801-1806.	1.6	42
220	Secretory phospholipases A2 isolated from Bothrops asper and from Crotalus durissus terrificus snake venoms induce distinct mechanisms for biosynthesis of prostaglandins E2 and D2 and expression of cyclooxygenases. Toxicon, 2008, 52, 428-439.	1.6	42
221	High resolution analysis of snake venom metalloproteinase (SVMP) peptide bond cleavage specificity using proteome based peptide libraries and mass spectrometry. Journal of Proteomics, 2011, 74, 401-410.	2.4	42
222	Muscle phospholipid hydrolysis by <i><scp>B</scp>othropsÂasper </i> <scp>A</scp> sp49 and <scp>L</scp> ys49 phospholipaseÂ <scp>A</scp> ₂ myotoxins – distinct mechanisms of action. FEBS Journal, 2013, 280, 3878-3886.	4.7	42
223	Ability of a polyvalent antivenom to neutralize the venom of Lachesis Muta Melanocephala, a new Costa Rican subspecies of the bushmaster. Toxicon, 1987, 25, 713-720.	1.6	41
224	Structural and functional properties of BaTX, a new Lys49 phospholipase A2 homologue isolated from the venom of the snake Bothrops alternatus. Biochimica Et Biophysica Acta - General Subjects, 2007, 1770, 585-593.	2.4	41
225	Antivenom for snakebite envenoming in Sri Lanka: The need for geographically specific antivenom and improved efficacy. Toxicon, 2013, 69, 90-97.	1.6	41
226	Poor Regenerative Outcome after Skeletal Muscle Necrosis Induced by Bothrops asper Venom: Alterations in Microvasculature and Nerves. PLoS ONE, 2011, 6, e19834.	2.5	41
227	Neutralization of myotoxic phospholipases A2 from the venom of the snake Bothrops asper by monoclonal antibodies. Toxicon, 1992, 30, 239-245.	1.6	40
228	Structure of a Lys49-Phospholipase A2 homologue isolated from the venom of Bothrops nummifer (jumping viper). Toxicon, 1999, 37, 371-384.	1.6	40
229	Modulation of the Susceptibility of Human Erythrocytes to Snake Venom Myotoxic Phospholipases A2: Role of Negatively Charged Phospholipids as Potential Membrane Binding Sites. Archives of Biochemistry and Biophysics, 2001, 391, 56-64.	3.0	40
230	Unresolved issues in the understanding of the pathogenesis of local tissue damage induced by snake venoms. Toxicon, 2018, 148, 123-131.	1.6	40
231	Why is Skeletal Muscle Regeneration Impaired after Myonecrosis Induced by Viperid Snake Venoms?. Toxins, 2018, 10, 182.	3.4	40
232	Inhibition of local hemorrhage and dermonecrosis induced by Bothrops asper snake venom: effectiveness of early in situ administration of the peptidomimetic metalloproteinase inhibitor batimastat and the chelating agent CaNa2EDTA. American Journal of Tropical Medicine and Hygiene, 2000, 63, 313-9.	1.4	40
233	Tissue pathology induced by snake venoms: How to understand a complex pattern of alterations from a systems biology perspective?. Toxicon, 2010, 55, 166-170.	1.6	39
234	Two color morphs of the pelagic yellow-bellied sea snake, Pelamis platura, from different locations of Costa Rica: Snake venomics, toxicity, and neutralization by antivenom. Journal of Proteomics, 2014, 103, 137-152.	2.4	39

#	Article	IF	CITATIONS
235	Inflammatory infiltrate in skeletal muscle injected with Bothrops asper venom. Revista De Biologia Tropical, 1986, 34, 209-14.	0.4	39
236	Purification and characterization of myotoxin IV, a phospholipase A2 variant, fromBothrops asper snake venom. Natural Toxins, 1995, 3, 26-31.	1.0	38
237	A new Pan African polyspecific antivenom developed in response to the antivenom crisis in Africa. Toxicon, 2003, 42, 35-41.	1.6	38
238	Danger in the reef: Proteome, toxicity, and neutralization of the venom of the olive sea snake, Aipysurus laevis. Toxicon, 2015, 107, 187-196.	1.6	38
239	The Search for Natural and Synthetic Inhibitors That Would Complement Antivenoms as Therapeutics for Snakebite Envenoming. Toxins, 2021, 13, 451.	3.4	38
240	Cleavage of the NH2-Terminal Octapeptide of Bothrops asper Myotoxic Lysine-49 Phospholipase A2 Reduces Its Membrane-Destabilizing Effect. Archives of Biochemistry and Biophysics, 1994, 312, 336-339.	3.0	37
241	Effects of neutrophil depletion in the local pathological alterations and muscle regeneration in mice injected with Bothrops jararaca snake venom. International Journal of Experimental Pathology, 2005, 86, 107-115.	1.3	37
242	Myotoxic and cytolytic activities of dimeric Lys49 phospholipase A2 homologues are reduced, but not abolished, by a pH-induced dissociation. Toxicon, 2005, 46, 291-296.	1.6	37
243	Isolation and characterization of a serine proteinase with thrombin-like activity from the venom of the snake Bothrops asper. Brazilian Journal of Medical and Biological Research, 2008, 41, 12-17.	1.5	37
244	MmTX1 and MmTX2 from coral snake venom potently modulate GABA _A receptor activity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E891-900.	7.1	37
245	Quantitation of myonecrosis induced by myotoxin a from prairie rattlesnake (Crotalus viridis viridis) venom. Toxicon, 1982, 20, 877-885.	1.6	36
246	The snake venom metalloproteinase BaP1 induces joint hypernociception through TNF-α and PGE2 -dependent mechanisms. British Journal of Pharmacology, 2007, 151, 1254-1261.	5.4	36
247	Proteomics of Wound Exudate in Snake Venom-Induced Pathology: Search for Biomarkers To Assess Tissue Damage and Therapeutic Success. Journal of Proteome Research, 2011, 10, 1987-2005.	3.7	36
248	Intravascular hemolysis induced by the venom of the Eastern coral snake, Micrurus fulvius, in a mouse model: Identification of directly hemolytic phospholipases A2. Toxicon, 2014, 90, 26-35.	1.6	36
249	Proteomic, toxicological and immunogenic characterization of Mexican west-coast rattlesnake (Crotalus basiliscus) venom and its immunological relatedness with the venom of Central American rattlesnake (Crotalus simus). Journal of Proteomics, 2017, 158, 62-72.	2.4	36
250	New approaches & technologies of venomics to meet the challenge of human envenoming by snakebites in India. Indian Journal of Medical Research, 2013, 138, 38-59.	1.0	36
251	Effects on cultured mammalian cells of myotoxin III, a phospholipase A2 isolated from Bothrops asper (terciopelo) venom. Biochimica Et Biophysica Acta - Molecular Cell Research, 1993, 1179, 253-259.	4.1	35
252	Isolation and Characterization of a Myotoxic Phospholipase A2from the Venom of the Arboreal SnakeBothriechis(Bothrops)schlegeliifrom Costa Rica. Archives of Biochemistry and Biophysics, 1997, 339, 260-266.	3.0	35

#	Article	IF	CITATIONS
253	Role of TNF-α, IL-1β and IL-6 in the local tissue damage induced by Bothrops asper snake venom: an experimental assessment in mice. Toxicon, 2005, 45, 171-178.	1.6	35
254	Stability of equine IgG antivenoms obtained by caprylic acid precipitation: Towards a liquid formulation stable at tropical room temperature. Toxicon, 2009, 53, 609-615.	1.6	35
255	In Vitro Antiplasmodial Activity of Phospholipases A2 and a Phospholipase Homologue Isolated from the Venom of the Snake Bothrops asper. Toxins, 2012, 4, 1500-1516.	3.4	35
256	Muscle Tissue Damage Induced by the Venom of Bothrops asper: Identification of Early and Late Pathological Events through Proteomic Analysis. PLoS Neglected Tropical Diseases, 2016, 10, e0004599.	3.0	35
257	Bothrops asper metalloproteinase BaP1 is inhibited by α2-macroglobulin and mouse serum and does not induce systemic hemorrhage or coagulopathy. Toxicon, 2004, 43, 213-217.	1.6	34
258	Blood flow is required for rapid endothelial cell damage induced by a snake venom hemorrhagic metalloproteinase. Microvascular Research, 2006, 71, 55-63.	2.5	34
259	A Call for Incorporating Social Research in the Global Struggle against Snakebite. PLoS Neglected Tropical Diseases, 2015, 9, e0003960.	3.0	34
260	Venom of the Coral Snake Micrurus clarki: Proteomic Profile, Toxicity, Immunological Cross-Neutralization, and Characterization of a Three-Finger Toxin. Toxins, 2016, 8, 138.	3.4	34
261	Comparative study of the edema-forming activity of costa rican snake venoms and its neutralization by a polyvalent antivenom. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1986, 85, 171-175.	0.2	33
262	Isolation of a galactose-binding lectin from the venom of the snake Bothrops godmani (Godmann's pit) Tj ETQqQ	0 0 rgBT 1.6	/Oygrlock 10
263	The venom of Bothrops asper from Guatemala: toxic activities and neutralization by antivenoms. Toxicon, 2001, 39, 401-405.	1.6	33
264	Why myotoxin-containing snake venoms possess powerful nucleotidases?. Biochemical and Biophysical Research Communications, 2013, 430, 1289-1293.	2.1	33
265	High-throughput immuno-profiling of mamba (Dendroaspis) venom toxin epitopes using high-density peptide microarrays. Scientific Reports, 2016, 6, 36629.	3.3	33
266	In vitro activity of BaH1, the main hemorrhagic toxin of Bothrops asper snake venom on bovine endothelial cells. Toxicon, 1995, 33, 1387-1391.	1.6	32
267	Envenomations by Bothrops and Crotalus Snakes Induce the Release of Mitochondrial Alarmins. PLoS Neglected Tropical Diseases, 2012, 6, e1526.	3.0	32
268	Proteomic and functional profiling of the venom of Bothrops ayerbei from Cauca, Colombia, reveals striking interspecific variation with Bothrops asper venom. Journal of Proteomics, 2014, 96, 159-172.	2.4	32
269	Critical Role of TLR2 and MyD88 for Functional Response of Macrophages to a Group IIA-Secreted Phospholipase A2 from Snake Venom. PLoS ONE, 2014, 9, e93741.	2.5	32
270	Exploration of immunoglobulin transcriptomes from mice immunized with three-finger toxins and phospholipases A ₂ from the Central American coral snake, <i>Micrurus nigrocinctus</i> . PeerJ, 2017, 5, e2924.	2.0	32

#	Article	IF	CITATIONS
271	Snake venomics and toxicological profiling of the arboreal pitviper Bothriechis supraciliaris from Costa Rica. Toxicon, 2012, 59, 592-599.	1.6	31
272	Evaluation of the preclinical efficacy of four antivenoms, distributed in sub-Saharan Africa, to neutralize the venom of the carpet viper, Echis ocellatus, from Mali, Cameroon, and Nigeria. Toxicon, 2015, 106, 97-107.	1.6	31
273	Phospholipase A2 enhances the endothelial cell detachment effect of a snake venom metalloproteinase in the absence of catalysis. Chemico-Biological Interactions, 2015, 240, 30-36.	4.0	31
274	Development of a new polyspecific antivenom for snakebite envenoming in Sri Lanka: Analysis of its preclinical efficacy as compared to a currently available antivenom. Toxicon, 2016, 122, 152-159.	1.6	31
275	p-Bromophenacyl bromide modification of Bothrops asper myotoxin II, a lysine-49 phospholipase A2, affects its pharmacological activities. Toxicon, 1993, 31, 1202-1206.	1.6	30
276	Effects of Bothrops asper (terciopelo) myotoxin III, a basic phospholipase A2, on liposomes and mouse gastrocnemius muscle. Toxicon, 1993, 31, 217-222.	1.6	30
277	Autocatalytic Acylation of Phospholipase-like Myotoxins. Biochemistry, 1995, 34, 4670-4675.	2.5	30
278	Snakebite mortality in Costa Rica. Toxicon, 1997, 35, 1639-1643.	1.6	30
279	A group IIA-secreted phospholipase A2 from snake venom induces lipid body formation in macrophages: the roles of intracellular phospholipases A2 and distinct signaling pathways. Journal of Leukocyte Biology, 2011, 90, 155-166.	3.3	30
280	Lemnitoxin, the major component of Micrurus lemniscatus coral snake venom, is a myotoxic and pro-inflammatory phospholipase A2. Toxicology Letters, 2016, 257, 60-71.	0.8	30
281	Understanding and confronting snakebite envenoming: The harvest ofÂcooperation. Toxicon, 2016, 109, 51-62.	1.6	30
282	A synthetic biology approach for consistent production of plantâ€made recombinant polyclonal antibodies against snake venom toxins. Plant Biotechnology Journal, 2018, 16, 727-736.	8.3	30
283	Coagulotoxic effects by brown snake (Pseudonaja) and taipan (Oxyuranus) venoms, and the efficacy of a new antivenom. Toxicology in Vitro, 2019, 58, 97-109.	2.4	30
284	Polymorphonuclear neutrophil leukocytes in snakebite envenoming. Toxicon, 2020, 187, 188-197.	1.6	30
285	A pan-specific antiserum produced by a novel immunization strategy shows a high spectrum of neutralization against neurotoxic snake venoms. Scientific Reports, 2020, 10, 11261.	3.3	30
286	Comparative study on the ability of IgG and F(ab')2 antivenoms to neutralize lethal and myotoxic effects induced by Micrurus nigrocinctus (coral snake) venom American Journal of Tropical Medicine and Hygiene, 1999, 61, 266-271.	1.4	30
287	Defining the pathogenic threat of envenoming by South African shield-nosed and coral snakes (genus) Tj ETQq1 186-198.	1 0.7843 2.4	- 14 rgBT /Ove 29
288	Degenerative and regenerative changes in murine skeletal muscle after injection of venom from the snake Bothrops asper: a histochemical and immunocytochemical study. International Journal of Experimental Pathology, 1991, 72, 211-26.	1.3	29

#	Article	IF	CITATIONS
289	An MTT-based method for the in vivo quantification of myotoxic activity of snake venoms and its neutralization by antibodies. Journal of Immunological Methods, 1993, 161, 231-237.	1.4	28
290	Pharmacokinetics of whole IgG equine antivenom: Comparison between normal and envenomed rabbits. Toxicon, 2006, 48, 255-263.	1.6	28
291	The C-terminal region of a Lys49 myotoxin mediates Ca2+ influx in C2C12 myotubes. Toxicon, 2010, 55, 590-596.	1.6	28
292	Preclinical evaluation of three polyspecific antivenoms against the venom of Echis ocellatus: Neutralization of toxic activities and antivenomics. Toxicon, 2016, 119, 280-288.	1.6	28
293	Neutralization of hyaluronidase and indirect hemolytic activities of Costa Rican snake venoms by a polyvalent antivenom. Toxicon, 1985, 23, 1015-1018.	1.6	27
294	Antibody neutralization of a myotoxin from the venom of Bothrops asper (terciopelo). Toxicon, 1987, 25, 443-449.	1.6	27
295	Biochemical and biological characterization of ecuadorian pitviper venoms (genera Bothriechis,) Tj ETQq1 1 0.784	4314 rgBT 1.6	/Qyerlock 10
296	Inhibition of the hemorrhagic activity of Bothrops asper venom by a novel neutralizing mixture. Toxicon, 1997, 35, 865-877.	1.6	27
297	Anticomplementary activity of equine whole IgG antivenoms: comparison of three fractionation protocols. Toxicon, 2005, 45, 123-128.	1.6	27
298	Study of the design and analytical properties of the lethality neutralization assay used to estimate antivenom potency against Bothrops asper snake venom. Biologicals, 2010, 38, 577-585.	1.4	27
299	Neutralization of Bothrops mattogrossensis snake venom from Bolivia: Experimental evaluation of llama and donkey antivenoms produced by caprylic acid precipitation. Toxicon, 2010, 55, 642-645.	1.6	27
300	Antiplasmodial effect of the venom of Crotalus durissus cumanensis, crotoxin complex and Crotoxin B. Acta Tropica, 2012, 124, 126-132.	2.0	27
301	Vipera berus berus Venom from Russia: Venomics, Bioactivities and Preclinical Assessment of Microgen Antivenom. Toxins, 2019, 11, 90.	3.4	27
302	Pathological and biochemical changes induced in mice after intramuscular injection of venom from newborn specimens of the snake Bothrops asper (Terciopelo). Toxicon, 1992, 30, 1099-1109.	1.6	26
303	An electrophoretic study on phospholipase A2 isoenzymes in the venoms of Central American crotaline snakes. Toxicon, 1992, 30, 815-823.	1.6	26
304	Mortality due to snakebite envenomation in Costa Rica (1993–2006). Toxicon, 2008, 52, 530-533.	1.6	26
305	Immunochemical and biological characterization of monoclonal antibodies against BaP1, a metalloproteinase from Bothrops asper snake venom. Toxicon, 2010, 56, 1059-1065.	1.6	26
306	The lethality test used for estimating the potency of antivenoms against Bothrops asper snake venom: Pathophysiological mechanisms, prophylactic analgesia, and a surrogate inÂvitro assay. Toxicon, 2015, 93, 41-50.	1.6	26

#	Article	IF	CITATIONS
307	Engineered nanoparticles bind elapid snake venom toxins and inhibit venom-induced dermonecrosis. PLoS Neglected Tropical Diseases, 2018, 12, e0006736.	3.0	26
308	Detection of proteins antigenically related to Bothrops asper myotoxin in crotaline snake venoms. Toxicon, 1987, 25, 947-955.	1.6	25
309	Effect of storage temperature on the stability of the liquid polyvalent antivenom produced in Costa Rica. Toxicon, 1990, 28, 101-105.	1.6	25
310	Quantitation by enzyme-immunoassay of antibodies against bothrops myotoxins in four commercially-available antivenoms. Toxicon, 1991, 29, 695-702.	1.6	25
311	A eficácia do antiveneno botrópico-crotálico na neutralização das principais atividades do veneno de Bothrops jararacussu. Revista Do Instituto De Medicina Tropical De Sao Paulo, 1992, 34, 77-83.	1.1	25
312	Isolation, characterization and mode of neutralization of a potent antihemorrhagic factor from the serum of the snake Bothrops asper. Biochimica Et Biophysica Acta - General Subjects, 1995, 1245, 232-238.	2.4	25
313	Amino acid sequence of a myotoxic Lys49-phospholipase A2 homologue from the venom of Cerrophidion (Bothrops) godmani. BBA - Proteins and Proteomics, 1998, 1384, 204-208.	2.1	25
314	Anticomplementary Activity of Horse IgG and F(ab')2 Antivenoms. American Journal of Tropical Medicine and Hygiene, 2014, 90, 574-584.	1.4	25
315	Cross-reactivity, antivenomics, and neutralization of toxic activities of Lachesis venoms by polyspecific and monospecific antivenoms. PLoS Neglected Tropical Diseases, 2017, 11, e0005793.	3.0	25
316	Comparison of the immunogenicity and antigenic composition of ten Central American snake venoms. Toxicon, 1993, 31, 1051-1059.	1.6	24
317	A comparison of in vitro methods for assessing the potency of therapeutic antisera against the venom of the coral snake Micrurus nigrocinctus. Toxicon, 1997, 35, 573-581.	1.6	24
318	Horse IgG isotypes and cross-neutralization of two snake antivenoms produced in Brazil and Costa Rica. Toxicon, 2000, 38, 633-644.	1.6	24
319	Increased Infectivity of <i>Staphylococcus aureus</i> in an Experimental Model of Snake Venom–Induced Tissue Damage. Journal of Infectious Diseases, 2007, 196, 748-754.	4.0	24
320	Local and systemic pathophysiological alterations induced by a serine proteinase from the venom of the snake Bothrops jararacussu. Toxicon, 2007, 49, 1063-1069.	1.6	24
321	Phase Behavior and Rheological Analysis of Reverse Liquid Crystals and W/I ₂ and W/H ₂ Gel Emulsions Using an Amphiphilic Block Copolymer. Langmuir, 2011, 27, 2286-2298.	3.5	24
322	Reducing the impact of snakebite envenoming in Latin America and the Caribbean: achievements and challenges ahead. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2014, 108, 530-537.	1.8	24
323	Novel Snakebite Therapeutics Must Be Tested in Appropriate Rescue Models to Robustly Assess Their Preclinical Efficacy. Toxins, 2020, 12, 528.	3.4	24
324	Production of monovalent anti-Bothrops asper antivenom: development of immune response in horses and neutralizing ability. Revista De Biologia Tropical, 1988, 36, 511-7.	0.4	24

#	Article	IF	CITATIONS
325	Histopathological and biochemical alterations induced by intramuscular injection of Bothrops asper (terciopelo) venom in mice. Toxicon, 1989, 27, 1085-1093.	1.6	23
326	Inhibition by CaNa2EDTA of local tissue damage induced by Bothrops asper (terciopelo) venom: Application in horse immunization for antivenom production. Toxicon, 1998, 36, 321-331.	1.6	23
327	Human heterophilic antibodies against equine immunoglobulins: assessment of their role in the early adverse reactions to antivenom administration. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2008, 102, 1115-1119.	1.8	23
328	First crotoxin-like phospholipase A2 complex from a New World non-rattlesnake species: Nigroviriditoxin, from the arboreal Neotropical snake Bothriechis nigroviridis. Toxicon, 2015, 93, 144-154.	1.6	23
329	Paediatric snakebite envenoming: recognition and management of cases. Archives of Disease in Childhood, 2021, 106, 14-19.	1.9	23
330	A potent antihemorrhagin in the serum of the non-poisonous water snake Natrix tessellata: isolation, characterization and mechanism of neutralization. Biochimica Et Biophysica Acta - General Subjects, 1994, 1201, 482-490.	2.4	22
331	Neutralization of the neuromuscular inhibition of venom and taipoxin from the taipan (Oxyuranus) Tj ETQq1 1 C	0.784314 r 0.8	gBT /Overloc
332	Proteomics and antivenomics of Papuan black snake (Pseudechis papuanus) venom with analysis of its toxicological profile and the preclinical efficacy of Australian antivenoms. Journal of Proteomics, 2017, 150, 201-215.	2.4	22
333	Proteomic and toxinological characterization of the venom of the South African Ringhals cobra Hemachatus haemachatus. Journal of Proteomics, 2018, 181, 104-117.	2.4	22
334	Perspectives and recommendations towards evidence-based health care for scorpion sting envenoming in the Brazilian Amazon: A comprehensive review. Toxicon, 2019, 169, 68-80.	1.6	22
335	Characterization of aspercetin, a platelet aggregating component from the venom of the snake Bothrops asper which induces thrombocytopenia and potentiates metalloproteinase-induced hemorrhage. Thrombosis and Haemostasis, 2001, 85, 710-5.	3.4	22
336	<i>In vitro</i> discovery of a human monoclonal antibody that neutralizes lethality of cobra snake venom. MAbs, 2022, 14, .	5.2	22
337	Equine antibodies to Bothrops asper myotoxin II: isolation from polyvalent antivenom and neutralizing ability. Toxicon, 1990, 28, 379-384.	1.6	21
338	The ability of specific antivenom and low temperature to inhibit the myotoxicity and neuromuscular block induced by Micrurus nigrocinctus venom. Toxicon, 1995, 33, 679-689.	1.6	21
339	Comparative study of the venoms of three subspecies of Lachesis muta (bushmaster) from Brazil, Colombia and Costa Rica. Toxicon, 1998, 36, 2021-2027.	1.6	21
340	Membrane independent activation of fibroblast proMMP-2 by snake venom: novel roles for venom proteinases. Toxicon, 2004, 44, 749-764.	1.6	21
341	Understanding structural and functional aspects of PII snake venom metalloproteinases: Characterization of BlatH1, a hemorrhagic dimeric enzyme from the venom of Bothriechis lateralis. Biochimie, 2014, 101, 145-155.	2.6	21
342	Antivenomic Characterization of Two Antivenoms Against the Venom of the Taipan, Oxyuranus scutellatus, from Papua New Guinea and Australia. American Journal of Tropical Medicine and Hygiene, 2014, 91, 887-894.	1.4	21

JOSE M GUTIERREZ

#	Article	IF	CITATIONS
343	Skeletal muscle necrosis induced by a phospholipase A2 isolated from the venom of the coral snake Micrurus nigrocinctus nigrocinctus. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1987, 87, 949-952.	0.2	20
344	Immunochemical characterization of Micrurus nigrocinctus nigrocinctus venom with monoclonal antibodies. Toxicon, 1994, 32, 695-712.	1.6	20
345	Immunological studies on BaH1 and BaP1, two hemorrhagic metalloproteinases from the venom of the snake Bothrops asper. Toxicon, 1995, 33, 1103-1106.	1.6	20
346	Two phospholipase A2 inhibitors from the plasma of Cerrophidion (Bothrops) godmani which selectively inhibit two different group-II phospholipase A2 myotoxins from its own venom: isolation, molecular cloning and biological properties. Biochemical Journal, 2000, 346, 631.	3.7	20
347	Calcium plays a key role in the effects induced by a snake venom Lys49 phospholipase A2 homologue on a lymphoblastoid cell line. Toxicon, 2006, 47, 75-86.	1.6	20
348	A Lys49-PLA2 myotoxin of Bothrops asper triggers a rapid death of macrophages that involves autocrine purinergic receptor signaling. Cell Death and Disease, 2012, 3, e343-e343.	6.3	20
349	Efficacy of IgG and F(ab′) ₂ Antivenoms to Neutralize Snake Venom-induced Local Tissue Damage as Assessed by the Proteomic Analysis of Wound Exudate. Journal of Proteome Research, 2012, 11, 292-305.	3.7	20
350	Identification of New Snake Venom Metalloproteinase Inhibitors Using Compound Screening and Rational Peptide Design. ACS Medicinal Chemistry Letters, 2012, 3, 540-543.	2.8	20
351	Biochemical and biological characterization of two serine proteinases from Colombian Crotalus durissus cumanensis snake venom. Toxicon, 2013, 63, 32-43.	1.6	20
352	Preclinical assessment of a polyspecific antivenom against the venoms of Cerrophidion sasai, Porthidium nasutum and Porthidium ophryomegas: Insights from combined antivenomics and neutralization assays. Toxicon, 2013, 64, 60-69.	1.6	20
353	An Asp49 Phospholipase A ₂ from Snake Venom Induces Cyclooxygenase-2 Expression and Prostaglandin E ₂ Production via Activation of NF- <i>κ</i> B, p38MAPK, and PKC in Macrophages. Mediators of Inflammation, 2014, 2014, 1-10.	3.0	20
354	Preclinical assessment of the neutralizing efficacy of snake antivenoms in Latin America and the Caribbean: A review. Toxicon, 2018, 146, 138-150.	1.6	20
355	Oral Microbiota of the Snake Bothrops lanceolatus in Martinique. International Journal of Environmental Research and Public Health, 2018, 15, 2122.	2.6	20
356	Varespladib (LY315920) inhibits neuromuscular blockade induced by Oxyuranus scutellatus venom in a nerve-muscle preparation. Toxicon, 2020, 187, 101-104.	1.6	20
357	A new method for the detection of phospholipase A2 variants: Identification of isozymes in the venoms of newborn and adult Bothrops asper (terciopelo) snakes. Toxicon, 1988, 26, 363-371.	1.6	19
358	Intramuscular administration of antivenoms in experimental envenomation by Bothrops asper: comparison between Fab and IgG. Toxicon, 2003, 41, 237-244.	1.6	19
359	Role of nitric oxide in the local and systemic pathophysiological effects induced by Bothrops asper snake venom in mice. Inflammation Research, 2006, 55, 245-253.	4.0	19
360	Assessment of metalloproteinase inhibitors clodronate and doxycycline in the neutralization of hemorrhage and coagulopathy induced by Bothrops asper snake venom. Toxicon, 2008, 52, 754-759.	1.6	19

#	Article	IF	CITATIONS
361	Effects of Bothrops asper snake venom on the expression of cyclooxygenases and production of prostaglandins by peritoneal leukocytes in vivo, and by isolated neutrophils and macrophages in vitro. Prostaglandins Leukotrienes and Essential Fatty Acids, 2009, 80, 107-114.	2.2	19
362	A Lys49 Phospholipase <mml:math xmlns:mml="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math</td"><td>'mml:mrow> 1.9</td><td></td></mml:math> 19	'mml:mrow> 1.9	
363	Combined venom gland cDNA sequencing and venomics of the New Guinea small-eyed snake, Micropechis ikaheka. Journal of Proteomics, 2014, 110, 209-229.	2.4	19
364	A neutralizing recombinant single chain antibody, scFv, against BaP1, A P-I hemorrhagic metalloproteinase from Bothrops asper snake venom. Toxicon, 2014, 87, 81-91.	1.6	19
365	Geographical variability of the venoms of four populations of Bothrops asper from Panama: Toxicological analysis and neutralization by a polyvalent antivenom. Toxicon, 2017, 132, 55-61.	1.6	19
366	Intravascular hemolysis induced by phospholipases A 2 from the venom of the Eastern coral snake, Micrurus fulvius : Functional profiles of hemolytic and non-hemolytic isoforms. Toxicology Letters, 2018, 286, 39-47.	0.8	19
367	Analgesic effect of morphine and tramadol in standard toxicity assays in mice injected with venom of the snake Bothrops asper. Toxicon, 2018, 154, 35-41.	1.6	19
368	A representative metalloprotease induces PGE2 synthesis in fibroblast-like synoviocytes via the NF-IºB/COX-2 pathway with amplification by IL-1I² and the EP4 receptor. Scientific Reports, 2020, 10, 3269.	3.3	19
369	In Vitro Tests for Assessing the Neutralizing Ability of Snake Antivenoms: Toward the 3Rs Principles. Frontiers in Immunology, 2020, 11, 617429.	4.8	19
370	Anticoagulant effect of myotoxic phospholipase A2 isolated from the venom of the snake Bothrops asper (Viperidae). Revista De Biologia Tropical, 1988, 36, 563-5.	0.4	19
371	Antibody-mediated neutralization and binding-reversal studies on α-neurotoxins from micrurus nigrocinctus (coral snake) venom. Toxicon, 1996, 34, 369-380.	1.6	18
372	Purification of IgG and albumin from human plasma by aqueous two phase system fractionation. Biotechnology Progress, 2012, 28, 1005-1011.	2.6	18
373	Low pH formulation of whole IgG antivenom: Impact on quality, safety, neutralizing potency and viral inactivation. Biologicals, 2012, 40, 129-133.	1.4	18
374	Venom of Bothrops asper from Mexico and Costa Rica: Intraspecific variation and cross-neutralization by antivenoms. Toxicon, 2012, 59, 158-162.	1.6	18
375	Systemic effects induced by the venom of the snake Bothrops caribbaeus in a murine model. Toxicon, 2013, 63, 19-31.	1.6	18
376	Toxicity of Bothrops sp snake venoms from Ecuador and preclinical assessment of the neutralizing efficacy of a polyspecific antivenom from Costa Rica. Toxicon, 2014, 88, 34-37.	1.6	18
377	Freeze-dried snake antivenoms formulated with sorbitol, sucrose or mannitol: Comparison of their stability in an accelerated test. Toxicon, 2014, 90, 56-63.	1.6	18
378	Development of a chicken-derived antivenom against the taipan snake (Oxyuranus scutellatus) venom and comparison with an equine antivenom. Toxicon, 2016, 120, 1-8.	1.6	18

#	Article	IF	CITATIONS
379	Preclinical evaluation of the neutralizing ability of a monospecific antivenom for the treatment of envenomings by Bothrops lanceolatus in Martinique. Toxicon, 2018, 148, 50-55.	1.6	18
380	Infectious Complications Following Snakebite by Bothrops lanceolatus in Martinique: A Case Series. American Journal of Tropical Medicine and Hygiene, 2020, 102, 232-240.	1.4	18
381	Isolation from a polyvalent antivenom of antibodies to a myotoxin in Bothrops asper snake venom. Toxicon, 1985, 23, 807-813.	1.6	17
382	Development of immunoassays for determination of circulating venom antigens during envenomations by coral snakes (Micrurus species). Toxicon, 1997, 35, 1605-1616.	1.6	17
383	A catalytically-inactive snake venom Lys49 phospholipase A2 homolog induces expression of cyclooxygenase-2 and production of prostaglandins through selected signaling pathways in macrophages. European Journal of Pharmacology, 2013, 708, 68-79.	3.5	17
384	Isolation and characterization of four medium-size disintegrins from the venoms of Central American viperid snakes of the genera Atropoides, Bothrops, Cerrophidion and Crotalus. Biochimie, 2014, 107, 376-384.	2.6	17
385	Development and characterization of two equine formulations towards SARS-CoV-2 proteins for the potential treatment of COVID-19. Scientific Reports, 2021, 11, 9825.	3.3	17
386	Cross-recognition of a pit viper (Crotalinae) polyspecific antivenom explored through high-density peptide microarray epitope mapping. PLoS Neglected Tropical Diseases, 2017, 11, e0005768.	3.0	17
387	Antibiotic therapy for snakebite envenoming. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2020, 26, e20190098.	1.4	17
388	Crystallization and preliminary diffraction data of two myotoxins isolated from the venoms of Bothrops Asper (terciopelo) and Bothrops Nummifer (jumping viper). Toxicon, 1993, 31, 1061-1064.	1.6	16
389	Development and validation of a reverse phase HPLC method for the determination of caprylic acid in formulations of therapeutic immunoglobulins and its application to antivenom production. Biologicals, 2009, 37, 230-234.	1.4	16
390	A phospholipase A2 from Bothrops asper snake venom activates neutrophils in culture: Expression of cyclooxygenase-2 and PGE2 biosynthesis. Toxicon, 2011, 57, 288-296.	1.6	16
391	Comparison of the adjuvant activity of aluminum hydroxide and calcium phosphate on the antibody response towards <i>Bothrops asper</i> snake venom. Journal of Immunotoxicology, 2014, 11, 44-49.	1.7	16
392	Ten Simple Rules for Aspiring Scientists in a Low-Income Country. PLoS Computational Biology, 2008, 4, e1000024.	3.2	15
393	First look into the venom of Roatan Island's critically endangered coral snake Micrurus ruatanus: Proteomic characterization, toxicity, immunorecognition and neutralization by an antivenom. Journal of Proteomics, 2019, 198, 177-185.	2.4	15
394	Circumstances and Consequences of Snakebite Envenomings: A Qualitative Study in South-Eastern Costa Rica. Toxins, 2020, 12, 45.	3.4	15
395	Pan-American Lancehead Pit-Vipers: Coagulotoxic Venom Effects and Antivenom Neutralisation of Bothrops asper and B. atrox Geographical Variants. Toxins, 2021, 13, 78.	3.4	15
396	Effects of PI and PIII Snake Venom Haemorrhagic Metalloproteinases on the Microvasculature: A Confocal Microscopy Study on the Mouse Cremaster Muscle. PLoS ONE, 2016, 11, e0168643.	2.5	15

JOSE M GUTIERREZ

#	Article	IF	CITATIONS
397	Skeletal muscle regeneration after myonecrosis induced by Bothrops asper (terciopelo) venom. Toxicon, 1986, 24, 223-231.	1.6	14
398	Immunohistochemical demonstration of the binding of Bothrops asper myotoxin to skeletal muscle sarcolemma. Toxicon, 1987, 25, 574-577.	1.6	14
399	Body distribution of Bothrops asper (terciopelo) snake venom myotoxin and its relationship to pathological changes. Toxicon, 1988, 26, 403-409.	1.6	14
400	Effect of various Viperidae and Crotalidae snake venoms on endothelial cells in vitro. Toxicon, 1994, 32, 1689-1695.	1.6	14
401	Neutralizing capacity of a new monovalent anti-Bothrops atrox antivenom: comparison with two commercial antivenoms. Brazilian Journal of Medical and Biological Research, 1997, 30, 375-379.	1.5	14
402	Inhibition of Toxic Activities ofVenom and Other Crotalid Snake Venoms by a Novel Neutralizing Mixture. Toxicology and Applied Pharmacology, 1997, 147, 442-447.	2.8	14
403	Biochemical and biological characterization of <i>Bothriechis schlegelii</i> snake venoms from Colombia and Costa Rica. Experimental Biology and Medicine, 2016, 241, 2075-2085.	2.4	14
404	Physicochemical characterization of commercial freeze-dried snake antivenoms. Toxicon, 2017, 126, 32-37.	1.6	14
405	An improved technique for the assessment of venom-induced haemorrhage in a murine model. Toxicon, 2017, 139, 87-93.	1.6	14
406	Systemic vascular leakage induced in mice by Russell's viper venom from Pakistan. Scientific Reports, 2018, 8, 16088.	3.3	14
407	Proteomic Analysis of Human Blister Fluids Following Envenomation by Three Snake Species in India: Differential Markers for Venom Mechanisms of Action. Toxins, 2019, 11, 246.	3.4	14
408	Paediatric snakebite envenoming: the world's most neglected â€~Neglected Tropical Disease'?. Archives of Disease in Childhood, 2020, 105, 1135-1139.	1.9	14
409	Snakebite envenoming from an Ecohealth perspective. Toxicon: X, 2020, 7, 100043.	2.9	14
410	DNase activity in Costa Rican crotaline snake venoms: Quantification of activity and identification of electrophoretic variants. Toxicon, 1991, 29, 1213-1224.	1.6	13
411	BITES AND ENVENOMATIONS BY COLUBRID SNAKES IN MEXICO AND CENTRAL AMERICA. Toxin Reviews, 2002, 21, 105-115.	1.5	13
412	Feeding behavior and venom toxicity of coral snake Micrurus nigrocinctus (Serpentes: Elapidae) on its natural prey in captivity. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2004, 138, 485-492.	2.6	13
413	Role of the animal model on the pharmacokinetics of equine-derived antivenoms. Toxicon, 2013, 70, 9-14.	1.6	13
414	Comparison of venom composition and biological activities of the subspecies Crotalus lepidus lepidus, Crotalus lepidus klauberi and Crotalus lepidus morulus from Mexico. Toxicon, 2013, 71, 84-95.	1.6	13

#	Article	IF	CITATIONS
415	Preclinical efficacy of Australian antivenoms against the venom of the small-eyed snake, Micropechis ikaheka, from Papua New Guinea: An antivenomics and neutralization study. Journal of Proteomics, 2014, 110, 198-208.	2.4	13
416	Characterization of a novel snake venom component: Kazal-type inhibitor-like protein from the arboreal pitviper Bothriechis schlegelii. Biochimie, 2016, 125, 83-90.	2.6	13
417	Severe snakebite envenomation in French Guiana: When antivenom is not available. Toxicon, 2018, 146, 87-90.	1.6	13
418	Metalloproteinases in disease: identification of biomarkers of tissue damage through proteomics. Expert Review of Proteomics, 2018, 15, 967-982.	3.0	13
419	Neutralization of local effects of the terciopelo (Bothrops asper) venom by blood serum of the colubrid snake Clelia clelia. Toxicon, 1982, 20, 571-579.	1.6	12
420	Venom Composition and Diet of the Cantil Agkistrodon bilineatus howardgloydi (Serpentes:) Tj ETQq0 0 0 rgBT	/Overlock	10 ₁₂ 50 542
421	Lachesis stenophrys venom reduces the equine antibody response towards Bothrops asper venom used as co-immunogen in the production of polyspecific snake antivenom. Toxicon, 2015, 103, 99-105.	1.6	12
422	Snakebite envenoming in children: A neglected tropical disease in a Costa Rican pediatric tertiary care center. Acta Tropica, 2019, 200, 105176.	2.0	12
423	Enzyme immunoassays for detection and quantification of venoms of Sri Lankan snakes: Application in the clinical setting. PLoS Neglected Tropical Diseases, 2020, 14, e0008668.	3.0	12
424	Turbidity of hyperimmune equine antivenom: The role of phenol and serum lipoproteins. Toxicon, 1993, 31, 61-66.	1.6	11
425	Comparison of the effect of Crotalus simus and Crotalus durissus ruruima venoms on the equine antibody response towards Bothrops asper venom: Implications for the production of polyspecific snake antivenoms. Toxicon, 2011, 57, 237-243.	1.6	11
426	Effect of geographical variation of Echis ocellatus, Naja nigricollis and Bitis arietans venoms on their neutralization by homologous and heterologous antivenoms. Toxicon, 2015, 108, 80-83.	1.6	11
427	Signaling pathways involved in zymosan phagocytosis induced by two secreted phospholipases A2 isolated from Bothrops asper snake venom in macrophages. International Journal of Biological Macromolecules, 2018, 113, 575-582.	7.5	11
428	Improving the control of snakebite envenomation in Latin America and the Caribbean: a discussion on pending issues. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2018, 112, 523-526.	1.8	11
429	Light emitting diode (LED) therapy reduces local pathological changes induced by Bothrops asper snake venom. Toxicon, 2018, 152, 95-102.	1.6	11
430	Deficient Skeletal Muscle Regeneration after Injury Induced by a Clostridium perfringens Strain Associated with Gas Gangrene. Infection and Immunity, 2019, 87, .	2.2	11
431	Protease Activity Profiling of Snake Venoms Using High-Throughput Peptide Screening. Toxins, 2019, 11, 170.	3.4	11
432	Snakebite envenoming in French Guiana: Assessment of the preclinical efficacy against the venom of Bothrops atrox of two polyspecific antivenoms. Toxicon, 2020, 173, 1-4.	1.6	11

#	Article	IF	CITATIONS
433	Bothrops Snakebite Envenomings in the Amazon Region. Current Tropical Medicine Reports, 2020, 7, 48-60.	3.7	11
434	Antivenomics of Atropoides mexicanus and Atropoides picadoi snake venoms: Relationship to the neutralization of toxic and enzymatic activities. Journal of Venom Research, 2010, 1, 8-17.	0.6	11
435	Membrane cholesterol modulates the cytolytic mechanism of myotoxin II, a Lys49 phospholipase A ₂ homologue from the venom of <i>Bothrops asper</i> . Cell Biochemistry and Function, 2011, 29, 365-370.	2.9	10
436	Homogenates of skeletal muscle injected with snake venom inhibit myogenic differentiation in cell culture. Muscle and Nerve, 2013, 47, 202-212.	2.2	10
437	Purification of equine whole IgG snake antivenom by using an aqueous two phase system as a primary purification step. Biologicals, 2015, 43, 37-46.	1.4	10
438	12-HETE is a regulator of PGE2 production via COX-2 expression induced by a snake venom group IIA phospholipase A2 in isolated peritoneal macrophages. Chemico-Biological Interactions, 2020, 317, 108903.	4.0	10
439	Analysis of wound exudates reveals differences in the patterns of tissue damage and inflammation induced by the venoms of Daboia russelii and Bothrops asper in mice. Toxicon, 2020, 186, 94-104.	1.6	10
440	A Lipidomic Perspective of the Action of Group IIA Secreted Phospholipase A2 on Human Monocytes: Lipid Droplet Biogenesis and Activation of Cytosolic Phospholipase A21±. Biomolecules, 2020, 10, 891.	4.0	10
441	An interactive database for the investigation of high-density peptide microarray guided interaction patterns and antivenom cross-reactivity. PLoS Neglected Tropical Diseases, 2020, 14, e0008366.	3.0	10
442	Snakebite envenoming in different national contexts: Costa Rica, Sri Lanka, and Nigeria. Toxicon: X, 2021, 9-10, 100066.	2.9	10
443	Heterologous Hyperimmune Polyclonal Antibodies Against SARS-CoV-2: A Broad Coverage, Affordable, and Scalable Potential Immunotherapy for COVID-19. Frontiers in Medicine, 2021, 8, 743325.	2.6	10
444	Cytotoxicity of snake venom Lys49 PLA2-like myotoxin on rat cardiomyocytes ex vivo does not involve a direct action on the contractile apparatus. Scientific Reports, 2021, 11, 19452.	3.3	10
445	Snakebite Envenomation in Central and South America. , 2015, , 1-22.		10
446	Two phospholipase A2 inhibitors from the plasma of Cerrophidion (Bothrops) godmani which selectively inhibit two different group-II phospholipase A2 myotoxins from its own venom: isolation, molecular cloning and biological properties. Biochemical Journal, 2000, 346 Pt 3, 631-9.	3.7	10
447	Pathogenesis of myonecrosis induced by coral snake (Micrurus nigrocinctus) venom in mice. British Journal of Experimental Pathology, 1986, 67, 1-12.	0.4	10
448	Effects of a myotoxic phospholipase A2 isolated from Bothrops asper venom on skeletal muscle sarcoplasmic reticulum. Toxicon, 1987, 25, 1244-1248.	1.6	9
449	The analgesics morphine and tramadol do not alter the acute toxicity induced by Bothrops asper snake venom in mice. Toxicon, 2014, 81, 54-57.	1.6	9
450	Cross-reactivity and cross-immunomodulation between venoms of the snakes Bothrops asper, Crotalus simus and Lachesis stenophrys, and its effect in the production of polyspecific antivenom for Central America. Toxicon, 2017, 138, 43-48.	1.6	9

#	Article	IF	CITATIONS
451	Epidemiology of snakebites in Colombia (2008-2016). Revista De Salud Publica, 2020, 22, 1-5.	0.1	9
452	The application of laboratoryâ€based analytical tools and techniques for the quality assessment and improvement of commercial antivenoms used in the treatment of snakebite envenomation. Drug Testing and Analysis, 2021, 13, 1471-1489.	2.6	9
453	Assessing a 6-h endpoint observation time in the lethality neutralization assay used to evaluate the preclinical efficacy of snake antivenoms. Toxicon: X, 2021, 12, 100087.	2.9	9
454	Anti-human erythrocyte antibodies in horse-derived antivenoms used in the treatment of snakebite envenomations. Biologicals, 2007, 35, 5-11.	1.4	8
455	Intravenous administration of equine-derived whole IgG antivenom does not induce early adverse reactions in non-envenomed horses and cows. Biologicals, 2010, 38, 664-669.	1.4	8
456	Novel Catalytically-Inactive PII Metalloproteinases from a Viperid Snake Venom with Substitutions in the Canonical Zinc-Binding Motif. Toxins, 2016, 8, 292.	3.4	8
457	Comparison of the adjuvant activity of emulsions with different physicochemical properties on the antibody response towards the venom of West African carpet viper (Echis ocellatus). Toxicon, 2017, 127, 106-111.	1.6	8
458	Articular inflammation induced by an enzymatically-inactive Lys49 phospholipase A2: activation of endogenous phospholipases contributes to the pronociceptive effect. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2017, 23, 18.	1.4	8
459	A novel pentameric phospholipase A2 myotoxin (PophPLA2) from the venom of the pit viper Porthidium ophryomegas. International Journal of Biological Macromolecules, 2018, 118, 1-8.	7.5	8
460	Long-term sequelae secondary to snakebite envenoming: a single centre retrospective study in a Costa Rican paediatric hospital. BMJ Paediatrics Open, 2020, 4, e000735.	1.4	8
461	An in vitro α-neurotoxin—nAChR binding assay correlates with lethality and in vivo neutralization of a large number of elapid neurotoxic snake venoms from four continents. PLoS Neglected Tropical Diseases, 2020, 14, e0008581.	3.0	8
462	Effect of the phospholipase A2 inhibitor Varespladib, and its synergism with crotalic antivenom, on the neuromuscular blockade induced by Crotalus durissus terrificus venom (with and without) Tj ETQq0 0 0 rgBT	/Ouverlock	1 0 Tf 50 292
463	Computational Biology in Costa Rica: The Role of a Small Country in the Global Context of Bioinformatics. PLoS Computational Biology, 2008, 4, e1000040.	3.2	7
464	Freeze-dried EchiTAb+ICP antivenom formulated with sucrose is more resistant to thermal stress than the liquid formulation stabilized with sorbitol. Toxicon, 2017, 133, 123-126.	1.6	7
465	Site mutation of residues in a loop surrounding the active site of a P I snake venom metalloproteinase abrogates its hemorrhagic activity. Biochemical and Biophysical Research Communications, 2019, 512, 859-863.	2.1	7
466	Comparative venomics and preclinical efficacy evaluation of a monospecific Hemachatus antivenom towards sub-Saharan Africa cobra venoms. Journal of Proteomics, 2021, 240, 104196.	2.4	7
467	Appraisal of antivenom production in public laboratories in Latin America during the first semester of 2020: The impact of COVID-19. PLoS Neglected Tropical Diseases, 2021, 15, e0009469.	3.0	7
468	Expanding the neutralization scope of the Central American antivenom (PoliVal-ICP) to include the venom of Crotalus durissus pifanorum. Journal of Proteomics, 2021, 246, 104315.	2.4	7

#	Article	IF	CITATIONS
469	Crystallization and preliminary X-ray diffraction analysis of suramin, a highly charged polysulfonated napthylurea, complexed with a myotoxic PLA2 from Bothrops asper venom. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1703, 83-85.	2.3	6
470	Effect of calcineurin inhibitors on myotoxic activity of crotoxin and Bothrops asper phospholipase A2 myotoxins in vivo and in vitro. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2006, 143, 284-294.	2.6	6
471	Extracts of Renealmia alpinia (Rottb.) MAAS Protect against Lethality and Systemic Hemorrhage Induced by Bothrops asper Venom: Insights from a Model with Extract Administration before Venom Injection. Toxins, 2015, 7, 1532-1543.	3.4	6
472	Antivenoms: Life-saving drugs for envenomings by animal bites and stings. Toxicon, 2018, 150, 11-12.	1.6	6
473	A Snake Venom-Secreted Phospholipase A ₂ Induces Foam Cell Formation Depending on the Activation of Factors Involved in Lipid Homeostasis. Mediators of Inflammation, 2018, 2018, 1-13.	3.0	6
474	Snakebite envenomation in the Caribbean: The role of medical and scientific cooperation. PLoS Neglected Tropical Diseases, 2018, 12, e0006441.	3.0	6
475	A Biomimetic of Endogenous Tissue Inhibitors of Metalloproteinases: Inhibition Mechanism and Contribution of Composition, Polymer Size, and Shape to the Inhibitory Effect. Nano Letters, 2021, 21, 5663-5670.	9.1	6
476	Clinical Toxicology of Snakebite in Central America. , 2017, , 645-665.		6
477	A transdisciplinary approach to snakebite envenoming. Toxicon: X, 2022, 13, 100088.	2.9	6
478	Proteomic and toxicological analysis of the venom of Micrurus yatesi and its neutralization by an antivenom. Toxicon: X, 2022, 13, 100097.	2.9	6
479	Effect of Bothrops asper (Fer-De-Lance) snake venom on erythrocyte membrane. A comparative study. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1992, 101, 433-436.	0.2	5
480	Venom of the crotaline snake Atropoides nummifer (jumping viper) from Guatemala and Honduras: comparative toxicological characterization, isolation of a myotoxic phospholipase A2 homologue and neutralization by two antivenoms. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2001, 129, 151-162.	2.6	5
481	Discovery of small molecule inhibitors for the snake venom metalloprotease BaP1 using in silico and in vitro tests. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2018-2022.	2.2	5
482	Changes in basement membrane components in an experimental model of skeletal muscle degeneration and regeneration induced by snake venom and myotoxic phospholipase A2. Toxicon, 2021, 192, 46-56.	1.6	5
483	Case Report: Hemothorax in Envenomation by the Viperid Snake Bothrops asper. American Journal of Tropical Medicine and Hygiene, 2019, 100, 714-716.	1.4	5
484	Venomous animals in a changing world. Global Change Biology, 2022, 28, 3750-3753.	9.5	5
485	Understanding the Snake Venom Metalloproteinases: An Interview with Jay Fox and José MarÃa Gutiérrez. Toxins, 2017, 9, 33.	3.4	4
486	Third-generation antivenomics analysis of the preclinical efficacy of Bothrofav® antivenom towards Bothrops lanceolatus venom. Toxicon: X, 2019, 1, 100004.	2.9	4

#	Article	IF	CITATIONS
487	Epidemiology of snakebites in El Salvador (2014–2019). Toxicon, 2020, 186, 26-28.	1.6	4
488	Preclinical efficacy against toxic activities of medically relevant Bothrops sp. (Serpentes: Viperidae) snake venoms by a polyspecific antivenom produced in Mexico. Revista De Biologia Tropical, 2016, 65, 345.	0.4	4
489	Traces of Bothrops snake venoms in necrotic muscle preclude myotube formation in vitro. Toxicon, 2022, 211, 36-43.	1.6	4
490	Róger Bolaños (1931–2007). Toxicon, 2007, 50, 170-171.	1.6	3
491	Bothrops asper: Beauty and peril in the Neotropics. Toxicon, 2009, 54, 901-903.	1.6	3
492	The Struggle of Neglected Scientific Groups: Ten Years of NeTropica Efforts to Promote Research in Tropical Diseases in Central America. PLoS Neglected Tropical Diseases, 2011, 5, e1055.	3.0	3
493	Industrial Production and Quality Control of Snake Antivenoms. , 2016, , 425-450.		3
494	Effect of premedication with subcutaneous adrenaline on the pharmacokinetics and immunogenicity of equine whole IgG antivenom in a rabbit model. Biomedicine and Pharmacotherapy, 2017, 90, 740-743.	5.6	3
495	Venoms. , 2017, , 99-128.		3
496	A multi-sectorial approach for addressing the problem of snakebite envenoming in Honduras. Toxicon, 2019, 159, 61-62.	1.6	3
497	Snakebite Envenomation in Central America. , 2021, , 543-558.		3
498	Basement membrane degradation and inflammation play a role in the pulmonary hemorrhage induced by a P-III snake venom metalloproteinase. Toxicon, 2021, 197, 12-23.	1.6	3
499	Instituto Butantan and Instituto Clodomiro Picado: A long-standing partnership in science, technology, and public health. Toxicon, 2021, 202, 75-81.	1.6	3
500	South and Central American Snakes. , 2017, , 2527-2548.		3
501	Snakebite Envenoming in Latin America and the Caribbean. , 2013, , 1-20.		3
502	THE NEED FOR AN INTEGRATED APPROACH IN CONFRONTING SNAKEBITE ENVENOMING IN LATIN AMERICA: THE RELEVANCE OF ENDOGENOUS SCIENTIFIC AND TECHNOLOGICAL RESEARCH. Vitae, 2016, 23, 103-105.	0.8	3
503	Inhibition of enzymatic activities of Bothrops asper snake venom and docking analysis of compounds from plants used in Central America to treat snakebite envenoming. Journal of Ethnopharmacology, 2022, 283, 114710.	4.1	3
504	Neutralization of coral snake Micrurus nigrocinctus venom by a monovalent antivenom. Brazilian Journal of Medical and Biological Research, 1991, 24, 701-10.	1.5	3

#	Article	IF	CITATIONS
505	<i>In Vivo</i> Neutralization of Myotoxin II, a Phospholipase A ₂ Homologue from <i>Bothrops asper</i> Venom, Using Peptides Discovered via Phage Display Technology. ACS Omega, 2022, 7, 15561-15569.	3.5	3
506	Crystallization and preliminary diffraction data of BaP1, a haemorrhagic metalloproteinase fromBothrops aspersnake venom. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1034-1035.	2.5	2
507	Inequality: span the global divide. Nature, 2016, 539, 31-31.	27.8	2
508	Snakebite Envenoming in Latin America and the Caribbean. Toxinology, 2018, , 51-72.	0.2	2
509	Nephrotoxicity induced by the venom of Hypnale hypnale from Sri Lanka: Studies on isolated perfused rat kidney and renal tubular cell lines. Toxicon, 2019, 165, 40-46.	1.6	2
510	Hemorrhagic and procoagulant P-III snake venom metalloproteinases differ in their binding to the microvasculature of mouse cremaster muscle. Toxicon, 2020, 178, 1-3.	1.6	2
511	Industrial Production and Quality Control of Snake Antivenoms. , 2014, , 1-22.		2
512	South American snake venom proteins antigenically related to Bothrops asper myotoxins. Brazilian Journal of Medical and Biological Research, 1990, 23, 427-35.	1.5	2
513	Coagulopathy induced by viperid snake venoms in a murine model: Comparison of standard coagulation tests and rotational thromboelastometry. Toxicon, 2022, 214, 121-129.	1.6	2
514	Dissociation of enzymatic and toxic activities by the use of antibodies. Toxicon, 1990, 28, 1245-1246.	1.6	1
515	Scale invariants in the preparation of reverse high internal phase ratio emulsions. Chemical Engineering Science, 2013, 101, 721-730.	3.8	1
516	Scale-up model obtained from the rheological analysis of highly concentrated emulsions prepared at three scales. Chemical Engineering Science, 2014, 111, 410-420.	3.8	1
517	PLOS Neglected Tropical Diseases broadens its coverage of envenomings caused by animal bites and stings. PLoS Neglected Tropical Diseases, 2021, 15, e0009481.	3.0	1
518	Backbone flexibility controls the activity and specificity of a protein-protein interface – specificity in snake venom metalloproteases (SVMPs). Journal of Cheminformatics, 2011, 3, .	6.1	0
519	Bothrops asper hemorrhagic proteinases. , 2004, , 651-654.		0
520	Bothrops asper Metalloproteinase BaP1. , 2013, , 984-987.		0
521	Bothrops asper Hemorrhagic Proteinases. , 2013, , 981-984.		0