
Thanos D Halazonetis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1621437/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNA Replication & amp; DNA Replication Stress. ACS in Focus, 2022, , .	0.4	0
2	Beating cancer one carbon at a time. Nature Cancer, 2022, 3, 141-142.	5.7	0
3	Non-covalent SARS-CoV-2 Mpro inhibitors developed from in silico screen hits. Scientific Reports, 2022, 12, 2505.	1.6	41
4	A multi-pronged approach targeting SARS-CoV-2 proteins using ultra-large virtual screening. IScience, 2021, 24, 102021.	1.9	66
5	Genomic Instability Profiles at the Single Cell Level in Mouse Colorectal Cancers of Defined Genotypes. Cancers, 2021, 13, 1267.	1.7	5
6	A transcription-based mechanism for oncogenic β-catenin-induced lethality in BRCA1/2-deficient cells. Nature Communications, 2021, 12, 4919.	5.8	6
7	Delayed DNA break repair for genome stability. Nature Cell Biology, 2021, 23, 1055-1057.	4.6	3
8	A method to sequence genomic sites of mitotic DNA synthesis in mammalian cells. Methods in Enzymology, 2021, 661, 283-304.	0.4	1
9	Draining the FEN1s for cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21849-21850.	3.3	1
10	High-resolution mapping of mitotic DNA synthesis regions and common fragile sites in the human genome through direct sequencing. Cell Research, 2020, 30, 997-1008.	5.7	74
11	Remodeling Collapsed DNA Replication Forks for Cancer Development. Cancer Research, 2019, 79, 1297-1298.	0.4	4
12	Monitoring early S-phase origin firing and replication fork movement by sequencing nascent DNA from synchronized cells. Nature Protocols, 2019, 14, 51-67.	5.5	21
13	Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress. Nature, 2018, 555, 112-116.	13.7	303
14	Enhanced Rate of Acquisition of Point Mutations in Mouse Intestinal Adenomas Compared to Normal Tissue. Cell Reports, 2017, 19, 2185-2192.	2.9	18
15	The role of SMARCAL1 in replication fork stability and telomere maintenance. DNA Repair, 2017, 56, 129-134.	1.3	13
16	Impaired liver regeneration in aged mice can be rescued by silencing Hippo core kinases MST1 and MST2. EMBO Molecular Medicine, 2017, 9, 46-60.	3.3	98
17	Increased Cell Proliferation and Gene Expression of Genes Related to Bone Remodeling, Cell Adhesion and Collagen Metabolism in the Periodontal Ligament of Unopposed Molars in Growing Rats. Frontiers in Physiology, 2017, 8, 75.	1.3	7
18	A Model to Investigate Single-Strand DNA Responses in G1 Human Cells via a Telomere-Targeted, Nuclease-Deficient CRISPR-Cas9 System. PLoS ONE, 2017, 12, e0169126.	1.1	2

THANOS D HALAZONETIS

#	Article	IF	CITATIONS
19	Alternative lengthening of human telomeres is a conservative <scp>DNA</scp> replication process with features of breakâ€induced replication. EMBO Reports, 2016, 17, 1731-1737.	2.0	133
20	Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks. Molecular Cell, 2016, 64, 1127-1134.	4.5	223
21	Râ€spondin 1 and noggin facilitate expansion of resident stem cells from nonâ€damaged gallbladders. EMBO Reports, 2016, 17, 769-779.	2.0	53
22	POLD3 Is Haploinsufficient for DNA Replication in Mice. Molecular Cell, 2016, 63, 877-883.	4.5	34
23	Ubiquitin-H2AX fusions render 53BP1 recruitment to DNA damage sites independent of RNF8 or RNF168. Cell Cycle, 2015, 14, 1748-1758.	1.3	10
24	DNA Replication Stress as a Hallmark of Cancer. Annual Review of Pathology: Mechanisms of Disease, 2015, 10, 425-448.	9.6	593
25	DNA replication stress as an Achilles' heel of cancer. Oncotarget, 2015, 6, 1-2.	0.8	50
26	Reversal of the DNA-Binding-Induced Loop L1 Conformational Switch in an Engineered Human p53 Protein. Journal of Molecular Biology, 2014, 426, 936-944.	2.0	36
27	Conservative DNA Replication. Nature Reviews Molecular Cell Biology, 2014, 15, 300-300.	16.1	4
28	Break-Induced Replication Repair of Damaged Forks Induces Genomic Duplications in Human Cells. Science, 2014, 343, 88-91.	6.0	387
29	The helicase domain and C-terminus of human RecQL4 facilitate replication elongation on DNA templates damaged by ionizing radiation. Carcinogenesis, 2012, 33, 1203-1210.	1.3	27
30	A Single-Nucleotide Substitution Mutator Phenotype Revealed by Exome Sequencing of Human Colon Adenomas. Cancer Research, 2012, 72, 6279-6289.	0.4	61
31	Studies of genomic copy number changes in human cancers reveal signatures of DNA replication stress. Molecular Oncology, 2011, 5, 308-314.	2.1	69
32	An induced fit mechanism regulates p53 DNA binding kinetics to confer sequence specificity. EMBO Journal, 2011, 30, 2167-2176.	3.5	95
33	Crystal Structure of a Multidomain Human p53 Tetramer Bound to the Natural <i>CDKN1A</i> (<i>p21</i>) p53-Response Element. Molecular Cancer Research, 2011, 9, 1493-1499.	1.5	49
34	SAHF, to senesce or not to senesce?. Cell Cycle, 2011, 10, 741-740.	1.3	3
35	TopBP1 functions with 53BP1 in the G1 DNA damage checkpoint. EMBO Journal, 2010, 29, 3723-3732.	3.5	79
36	Genomic instability — an evolving hallmark of cancer. Nature Reviews Molecular Cell Biology, 2010, 11, 220-228.	16.1	1,798

THANOS D HALAZONETIS

#	Article	IF	CITATIONS
37	An Oligomerized 53BP1 Tudor Domain Suffices for Recognition of DNA Double-Strand Breaks. Molecular and Cellular Biology, 2009, 29, 1050-1058.	1.1	104
38	An Oncogene-Induced DNA Damage Model for Cancer Development. Science, 2008, 319, 1352-1355.	6.0	1,612
39	DNA Damage Signaling Recruits the RNA Polymerase II Binding Protein Che-1 to the p53 Promoter. Molecular Cell, 2006, 24, 809-810.	4.5	8
40	Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature, 2006, 444, 633-637.	13.7	1,777
41	Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature, 2005, 434, 907-913.	13.7	1,870
42	ATM signaling and 53BP1. Radiotherapy and Oncology, 2005, 76, 119-122.	0.3	83
43	Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature, 2004, 432, 406-411.	13.7	815
44	Structural Differences in the DNA Binding Domains of Human p53 and Its C. elegans Ortholog Cep-1. Structure, 2004, 12, 1237-1243.	1.6	51
45	Constitutively active DNA damage checkpoint pathways as the driving force for the high frequency of p53 mutations in human cancer. DNA Repair, 2004, 3, 1057-1062.	1.3	37
46	53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nature Cell Biology, 2002, 4, 998-1002.	4.6	386
47	P53 Binding Protein 1 (53bp1) Is an Early Participant in the Cellular Response to DNA Double-Strand Breaks. Journal of Cell Biology, 2000, 151, 1381-1390.	2.3	801
48	Change in oligomerization specificity of the p53 tetramerization domain by hydrophobic amino acid substitutions. Protein Science, 1999, 8, 1773-1779.	3.1	16