## Yanrui Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1621033/publications.pdf Version: 2024-02-01



YANDUL DINC

| #  | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Human skeleton representation for 3D action recognition based on complex network coding and LSTM. Journal of Visual Communication and Image Representation, 2022, 82, 103386.                                                                                                | 2.8 | 13        |
| 2  | Identification of Anticancer and Anti-inflammatory Drugs from Drugtarget Interaction Descriptors by<br>Machine Learning. Letters in Drug Design and Discovery, 2022, 19, 800-810.                                                                                            | 0.7 | 0         |
| 3  | Teaching Model Design of Computer Programming Courses for Digital Media Technology Students.<br>Wireless Communications and Mobile Computing, 2022, 2022, 1-5.                                                                                                               | 1.2 | 0         |
| 4  | A 70‑RNA model based on SVR and RFE for predicting the pancreatic cancer clinical prognosis. Methods, 2022, 204, 278-285.                                                                                                                                                    | 3.8 | 4         |
| 5  | Probing the Relation Between Community Evolution in Dynamic Residue Interaction Networks and<br>Xylanase Thermostability. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021,<br>18, 686-696.                                                           | 3.0 | 1         |
| 6  | Identification of Key Features of CNS Drugs Based on SVM and Greedy Algorithm. Current<br>Computer-Aided Drug Design, 2021, 16, 725-733.                                                                                                                                     | 1.2 | 4         |
| 7  | ACHP: A Web Server for Predicting Anti-Cancer Peptide and Anti-Hypertensive Peptide. International<br>Journal of Peptide Research and Therapeutics, 2021, 27, 1933-1944.                                                                                                     | 1.9 | 9         |
| 8  | Community evolution and frequent subgraph patterns affect the thermostability of B. subtilis lipase<br>A. Food Bioscience, 2021, 41, 100984.                                                                                                                                 | 4.4 | 0         |
| 9  | ldentification of subtype specific biomarkers of clear cell renal cell carcinoma using random forest<br>and greedy algorithm. BioSystems, 2021, 204, 104372.                                                                                                                 | 2.0 | 5         |
| 10 | Dissecting the critical pathway crosstalk mechanisms of thyroid cancer based on drug-target genes and disease genes. Biologia (Poland), 2021, 76, 3489-3499.                                                                                                                 | 1.5 | 1         |
| 11 | Determination of the key ccRCC-related molecules from monolayer network to three-layer network.<br>Cancer Genetics, 2021, 256-257, 40-47.                                                                                                                                    | 0.4 | 2         |
| 12 | The Quantitative Structure-Activity Relationships between GABAA Receptor and Ligands based on<br>Binding Interface Characteristic. Current Computer-Aided Drug Design, 2021, 17, 785-796.                                                                                    | 1.2 | 1         |
| 13 | Identification of the complex regulatory relationships related to gastric cancer from<br>IncRNAâ€miRNAâ€mRNA network. Journal of Cellular Biochemistry, 2020, 121, 876-887.                                                                                                  | 2.6 | 32        |
| 14 | T-DYNMOGA-Qw: Detecting Community From Dynamic Residue Interaction Energy Network and Its<br>Application in Analyzing Lipase Thermostability. IEEE Access, 2020, 8, 89439-89447.                                                                                             | 4.2 | 0         |
| 15 | Polygala tenuifolia-Acori tatarinowii herbal pair as an inspiration for substituted cinnamic α-asaronol<br>esters: Design, synthesis, anticonvulsant activity, and inhibition of lactate dehydrogenase study.<br>European Journal of Medicinal Chemistry, 2019, 183, 111650. | 5.5 | 17        |
| 16 | Thermostability of Lipase A and Dynamic Communication Based on Residue Interaction Network.<br>Protein and Peptide Letters, 2019, 26, 702-716.                                                                                                                               | 0.9 | 4         |
| 17 | Identification of the Key Factors Related to Bladder Cancer by IncRNA-miRNA-mRNA Three-Layer Network. Frontiers in Genetics, 2019, 10, 1398.                                                                                                                                 | 2.3 | 15        |
| 18 | The Thermo Stability of Lipase: Salt Bridge and Salt Bridge Network Perspective Based on Long Time<br>Molecular Dynamics Simulation. , 2017, , .                                                                                                                             |     | 0         |

Yanrui Ding

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The Relation Between Lipase Thermostability and Dynamics of Hydrogen Bond and Hydrogen Bond<br>Network Based on Long Time Molecular Dynamics Simulation. Protein and Peptide Letters, 2017, 24,<br>643-648. | 0.9 | 7         |
| 20 | Communities in the iron superoxide dismutase amino acid network. Journal of Theoretical Biology, 2015, 367, 278-285.                                                                                        | 1.7 | 0         |
| 21 | Comparison of Protein-water Interactions in Psychrophilic, Mesophilic, and Thermophilic Fe-SOD.<br>Protein and Peptide Letters, 2014, 21, 578-583.                                                          | 0.9 | 10        |
| 22 | Conformational dynamics of xylanase a from <i>Streptomyces lividans</i> : Implications for TIMâ€barrel enzyme thermostability. Biopolymers, 2013, 99, 594-604.                                              | 2.4 | 13        |
| 23 | Application of principal component analysis to determine the key structural features contributing to iron superoxide dismutase thermostability. Biopolymers, 2012, 97, 864-872.                             | 2.4 | 11        |
| 24 | Comparison of the structural basis for thermal stability between archaeal and bacterial proteins.<br>Extremophiles, 2012, 16, 67-78.                                                                        | 2.3 | 12        |
| 25 | The influence of dipeptide composition on protein thermostability. FEBS Letters, 2004, 569, 284-288.                                                                                                        | 2.8 | 45        |