Johari Surif

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1621011/publications.pdf

Version: 2024-02-01

		1683354	1372195
36	156	5	10
papers	citations	h-index	g-index
36	36	36	84
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Malaysian Students' Scientific Argumentation: Do groups perform better than individuals?. International Journal of Science Education, 2015, 37, 505-528.	1.0	30
2	Enhancing students' HOTS in laboratory educational activity by using concept map as an alternative assessment tool. Chemistry Education Research and Practice, 2017, 18, 849-874.	1.4	25
3	Individual Versus Group Argumentation: Student's Performance in a Malaysian Context. International Education Studies, 2014, 7, .	0.3	17
4	Concept cartoon in problem-based learning: A systematic literature review analysis. Journal of Technology and Science Education, 2019, 9, 51.	0.5	10
5	Does the Use of Smart Board Increase Students' Higher Order Thinking Skills (HOTS)?. IEEE Access, 2021, 9, 1833-1854.	2.6	8
6	Non-routine mathematical problems among in-service and pre-service mathematics teachers. , 2014, , .		7
7	Comparison of Pedagogical Content Knowledge between Expert and Novice Lecturers in Teaching and Learning Process. , 2014, , .		5
8	Effect of STEM competition on STEM career interest. , 2018, , .		5
9	Enhancing students' geometrical thinking levels through Van Hiele's phase-based Geometer's Sketchpad-aided learning. , 2015, , .		4
10	Effects of Concept Mapping in Laboratory Learning Activities to Generate Students' Higher Order Thinking Skills in Electrolysis. Advanced Science Letters, 2017, 23, 2779-2782.	0.2	4
11	Current Teaching Practice of Physics Teachers and Implications for Integrated Stem Education. Universal Journal of Educational Research, 2020, 8, 18-28.	0.1	4
12	The Effectiveness of a Mentor-Mentee Program on Malaysian School Students' Interest in STEM., 2018,		3
13	Designing Mobile Learning Communication Aid as an Android App. Advanced Science Letters, 2016, 22, 4023-4027.	0.2	3
14	A Review of Literature in Mobile Learning: A New Paradigm in Teaching and Learning Pedagogy for Now and Then. Advanced Science Letters, 2017, 23, 7416-7419.	0.2	3
15	The Pattern of Physics Problem Solving Between More Successful and Less Successful from Metacognitive Perspective. Advanced Science Letters, 2018, 24, 8476-8479.	0.2	3
16	Mastery of Scientific Argumentation on the Concept of Neutralization in Chemistry: A Malaysian Perspective. Malaysian Journal of Learning and Instruction, 2015, , 85-101.	0.3	3
17	AREDAPPS: Mobile Augmented Reality Development and Learning Framework Based on Augmented Reality Technology for Engineering Drawing Course. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2022, , 322-335.	0.2	3
18	The Effects of Van Hiele's Phase-Based Learning on Students' Geometric Achievement and Attitude towards Geometry. , 2014, , .		2

#	Article	IF	Citations
19	Web Pro-Mc Physics as a support tool for improving physics problem solving skills. , 2015, , .		2
20	Factors preventing Malaysian teachers from using Information and Communication Technology (ICT) in teaching mathematics. , $2016, \ldots$		2
21	Micro Imagination: Imagination with an Alternative Framework in a Chemistry Class. MATEC Web of Conferences, 2018, 215, 02013.	0.1	2
22	Investigating the Level of Scientific Creativity of Science Students. Advanced Science Letters, 2017, 23, 8247-8250.	0.2	2
23	"The Beauty of I-Bonding" Website Development Based on Needham 5 Phase Constructivism Model. , 2014, , .		1
24	Cyclic improvement in the implementation of reflective practice. , 2014, , .		1
25	Physics problem solving: Selecting more successful and less successful problem solvers. , 2014, , .		1
26	UM Chemistry Module based on Pedagogical Content Knowledge in chemical bonding topic. , 2014, , .		1
27	My reflection mobile app promotes critical reflective practice. , 2016, , .		1
28	Addressing chemical reaction misconceptions using five phase Needham Model. , 2018, , .		1
29	Concept Map: Alternative Assessment Tool in Laboratory Learning of Electrolysis. Advanced Science Letters, 2016, 22, 4216-4220.	0.2	1
30	Integrating Authentic Learning Practice to Develop Problem Solving Competency in Learning Electrolysis. Advanced Science Letters, 2017, 23, 8325-8329.	0.2	1
31	Improving Spatial Visualization Skills in Educational Settings. Indian Journal of Public Health Research and Development, 2019, 10, 1808.	0.1	1
32	The Development of MyGSP: An Online Resource for Teaching Mathematics Based on Geometer's Sketchpad (GSP). Asian Social Science, 2014, 10, .	0.1	0
33	Physics problem solving strategies and metacognitive skills: Force and motion topics. , 2014, , .		0
34	The knowledge and practice of & $\#x201C$;New Academia& $\#x201D$; among lecturers: A case study in Universiti Teknologi Malaysia. , 2014, , .		0
35	Effect of Inductive Teaching Method To Improve Science Process Skills In Electrochemistry. , 2019, , .		0
36	DOES Sketchup Make Improve Students' Visual-Spatial Skills?. IEEE Access, 2022, 10, 13936-13953.	2.6	0