Mads Daugaard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1620709/publications.pdf

Version: 2024-02-01

		172207	161609
55	3,947	29	54
papers	citations	h-index	g-index
59	59	59	9331
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Internalization and trafficking of CSPG-bound recombinant VAR2CSA lectins in cancer cells. Scientific Reports, 2022, 12, 3075.	1.6	3
2	UVâ€induced DNA damage response in blood cells for cancer detection. Medical Devices & Sensors, 2021, 4, e10146.	2.7	O
3	HACE1 blocks HIF1 \hat{l} ± accumulation under hypoxia in a RAC1 dependent manner. Oncogene, 2021, 40, 1988-2001.	2.6	5
4	Development of a bispecific immune engager using a recombinant malaria protein. Cell Death and Disease, 2021, 12, 353.	2.7	5
5	A Potential Role for HUWE1 in Modulating Cisplatin Sensitivity. Cells, 2021, 10, 1262.	1.8	9
6	Proteomic Screens for Suppressors of Anoikis Identify IL1RAP as a Promising Surface Target in Ewing Sarcoma. Cancer Discovery, 2021, 11, 2884-2903.	7.7	51
7	Oncofetal Chondroitin Sulfate Is a Highly Expressed Therapeutic Target in Non-Small Cell Lung Cancer. Cancers, 2021, 13, 4489.	1.7	2
8	NOT-Gated CD93 CAR T Cells Effectively Target AML with Minimized Endothelial Cross-Reactivity. Blood Cancer Discovery, 2021, 2, 648-665.	2.6	37
9	Alternative polyadenylation is a determinant of oncogenic Ras function. Science Advances, 2021, 7, eabh0562.	4.7	7
10	Post-translational modifications in bladder cancer: Expanding the tumor target repertoire. Urologic Oncology: Seminars and Original Investigations, 2020, 38, 858-866.	0.8	14
11	Dianhydrogalactitol synergizes with topoisomerase poisons to overcome DNA repair activity in tumor cells. Cell Death and Disease, 2020, 11, 577.	2.7	3
12	A simple method for detecting oncofetal chondroitin sulfate glycosaminoglycans in bladder cancer urine. Cell Death Discovery, 2020, 6, 65.	2.0	5
13	HACE1 Prevents Lung Carcinogenesis via Inhibition of RAC-Family GTPases. Cancer Research, 2020, 80, 3009-3022.	0.4	19
14	Cancer Cells Employ Nuclear Caspase-8 to Overcome the p53-Dependent G2/M Checkpoint through Cleavage of USP28. Molecular Cell, 2020, 77, 970-984.e7.	4.5	54
15	An affinity chromatography and glycoproteomics workflow to profile the chondroitin sulfate proteoglycans that interact with malarial VAR2CSA in the placenta and in cancer. Glycobiology, 2020, 30, 989-1002.	1.3	16
16	Oncofetal Chondroitin Sulfate: A Putative Therapeutic Target in Adult and Pediatric Solid Tumors. Cells, 2020, 9, 818.	1.8	9
17	Locoregional delivery of CART cells to the cerebrospinal fluid for treatment of metastatic medulloblastoma and ependymoma. Nature Medicine, 2020, 26, 720-731.	15.2	141
18	Capture and Detection of Circulating Glioma Cells Using the Recombinant VAR2CSA Malaria Protein. Cells, 2019, 8, 998.	1.8	49

#	Article	IF	CITATIONS
19	Risks and Benefits of Chimeric Antigen Receptor T-Cell (CAR-T) Therapy in Cancer: A Systematic Review and Meta-Analysis. Transfusion Medicine Reviews, 2019, 33, 98-110.	0.9	124
20	Multicenter Validation of Histopathologic Tumor Regression Grade After Neoadjuvant Chemotherapy in Muscle-invasive Bladder Carcinoma. American Journal of Surgical Pathology, 2019, 43, 1600-1610.	2.1	24
21	Androgen-regulated transcription of ESRP2 drives alternative splicing patterns in prostate cancer. ELife, 2019, 8, .	2.8	56
22	<scp>SEMA</scp> 3C drives cancer growth by transactivating multiple receptor tyrosine kinases via Plexin B1. EMBO Molecular Medicine, 2018, 10, 219-238.	3.3	54
23	<i>hace1</i> Influences zebrafish cardiac development via ROSâ€dependent mechanisms. Developmental Dynamics, 2018, 247, 289-303.	0.8	17
24	Selective Inhibition of the Lactate Transporter MCT4 Reduces Growth of Invasive Bladder Cancer. Molecular Cancer Therapeutics, 2018, 17, 2746-2755.	1.9	53
25	Dianhydrogalactitol induces replication-dependent DNA damage in tumor cells preferentially resolved by homologous recombination. Cell Death and Disease, 2018, 9, 1016.	2.7	13
26	The VAR2CSA malaria protein efficiently retrieves circulating tumor cells in an EpCAM-independent manner. Nature Communications, 2018, 9, 3279.	5.8	109
27	Calcium-sensing receptor (CaSR) promotes development of bone metastasis in renal cell carcinoma. Oncotarget, 2018, 9, 15766-15779.	0.8	17
28	An Oncofetal Glycosaminoglycan Modification Provides Therapeutic Access to Cisplatin-resistant Bladder Cancer. European Urology, 2017, 72, 142-150.	0.9	38
29	Assessment of programmed deathâ€ligand 1 expression and tumorâ€associated immune cells in pediatric cancer tissues. Cancer, 2017, 123, 3807-3815.	2.0	135
30	P3.02c-007 Assessment of Dianhydrogalactitol in the Treatment of Relapsed or Refractory Non-Small Cell Lung Cancer. Journal of Thoracic Oncology, 2017, 12, S1275-S1276.	0.5	0
31	OA19.05 High Oncofetal Chondroitin Sulfate Expression is an Independent PrognosticÂFactor of Poor Survival in Early-Stage NSCLC. Journal of Thoracic Oncology, 2017, 12, S319-S320.	0.5	0
32	Identification of cancer-associated missense mutations in hace1 that impair cell growth control and Rac1 ubiquitylation. Scientific Reports, 2017, 7, 44779.	1.6	22
33	Burkitt lymphoma expresses oncofetal chondroitin sulfate without being a reservoir for placental malaria sequestration. International Journal of Cancer, 2017, 140, 1597-1608.	2.3	14
34	Efficacy and safety of chimeric antigen receptor T-cell (CAR-T) therapy in patients with haematological and solid malignancies: protocol for a systematic review and meta-analysis. BMJ Open, 2017, 7, e019321.	0.8	16
35	Placental Sequestration of Plasmodium falciparum Malaria Parasites Is Mediated by the Interaction Between VAR2CSA and Chondroitin Sulfate A on Syndecan-1. PLoS Pathogens, 2016, 12, e1005831.	2.1	79
36	The Tumor Suppressor Hace1 Is a Critical Regulator of TNFR1-Mediated Cell Fate. Cell Reports, 2016, 15, 1481-1492.	2.9	46

3

#	Article	lF	Citations
37	Oncofetal Chondroitin Sulfate Glycosaminoglycans Are Key Players in Integrin Signaling and Tumor Cell Motility. Molecular Cancer Research, 2016, 14, 1288-1299.	1.5	57
38	Targeting Binding Function-3 of the Androgen Receptor Blocks Its Co-Chaperone Interactions, Nuclear Translocation, and Activation. Molecular Cancer Therapeutics, 2016, 15, 2936-2945.	1.9	24
39	Real-time and label free determination of ligand binding-kinetics to primary cancer tissue specimens; a novel tool for the assessment of biomarker targeting. Sensing and Bio-Sensing Research, 2016, 9, 23-30.	2.2	16
40	Hepatoma-derived growth factor-related protein 2 promotes DNA repair by homologous recombination. Nucleic Acids Research, 2016, 44, 2214-2226.	6.5	38
41	Eradication of B-ALL using chimeric antigen receptor–expressing T cells targeting the TSLPR oncoprotein. Blood, 2015, 126, 629-639.	0.6	110
42	Targeting Human Cancer by a Glycosaminoglycan Binding Malaria Protein. Cancer Cell, 2015, 28, 500-514.	7.7	169
43	Loss of the tumor suppressor Hace1 leads to ROS-dependent glutamine addiction. Oncogene, 2015, 34, 4005-4010.	2.6	28
44	HACE1 reduces oxidative stress and mutant Huntingtin toxicity by promoting the NRF2 response. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3032-3037.	3.3	85
45	Hace1 controls ROS generation of vertebrate Rac1-dependent NADPH oxidase complexes. Nature Communications, 2013, 4, 2180.	5.8	94
46	The tumour suppressor HACE1 controls cell migration by regulating Rac1 degradation. Oncogene, 2013, 32, 1735-1742.	2.6	77
47	LEDGF (p75) promotes DNA-end resection and homologous recombination. Nature Structural and Molecular Biology, 2012, 19, 803-810.	3.6	169
48	Identification of a c-Jun N-terminal kinase-2-dependent signal amplification cascade that regulates c-Myc levels in ras transformation. Oncogene, 2012, 31, 390-401.	2.6	40
49	ErbB2-Driven Breast Cancer Cell Invasion Depends on a Complex Signaling Network Activating Myeloid Zinc Finger-1-Dependent Cathepsin B Expression. Molecular Cell, 2012, 45, 764-776.	4.5	112
50	Identification of Small Molecule Inhibitors of Phosphatidylinositol 3-Kinase and Autophagy. Journal of Biological Chemistry, 2011, 286, 38904-38912.	1.6	82
51	BAMLET Activates a Lysosomal Cell Death Program in Cancer Cells. Molecular Cancer Therapeutics, 2010, 9, 24-32.	1.9	122
52	Lens Epithelium-Derived Growth Factor Is an Hsp70-2 Regulated Guardian of Lysosomal Stability in Human Cancer. Cancer Research, 2007, 67, 2559-2567.	0.4	112
53	The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Letters, 2007, 581, 3702-3710.	1.3	928
54	Hsp70-2 is Required for Tumor Cell Growth and Survival. Cell Cycle, 2005, 4, 877-880.	1.3	59

#	Article	IF	CITATIONS
55	Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes and Development, 2005, 19, 570-582.	2.7	354