Adah Almutairi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/162064/publications.pdf

Version: 2024-02-01

55 papers

4,158 citations

136740 32 h-index 55 g-index

55 all docs 55 docs citations

55 times ranked 6293 citing authors

#	Article	IF	CITATIONS
1	Recent progress of redox-responsive polymeric nanomaterials for controlled release. Journal of Materials Chemistry B, 2021, 9, 2179-2188.	2.9	45
2	Hydrogen Sulfide-Responsive Self-Assembled Nanogel. ACS Applied Polymer Materials, 2020, 2, 3756-3760.	2.0	12
3	Highly responsive and rapid hydrogen peroxide-triggered degradation of polycaprolactone nanoparticles. Biomaterials Science, 2020, 8, 2394-2397.	2.6	10
4	The Chemistry of Boronic Acids in Nanomaterials for Drug Delivery. Accounts of Chemical Research, 2019, 52, 3108-3119.	7.6	135
5	Bioelectronic Modulators: A Bioelectronic Platform Modulates pH in Biologically Relevant Conditions (Adv. Sci. 7/2019). Advanced Science, 2019, 6, 1970041.	5.6	2
6	High Nd(III)-Sensitizer Concentrations for 800 nm Wavelength Excitation Using Isotropic Core–Shell Upconversion Nanoparticles. Chemistry of Materials, 2019, 31, 3103-3110.	3.2	21
7	A Bioelectronic Platform Modulates pH in Biologically Relevant Conditions. Advanced Science, 2019, 6, 1800935.	5.6	17
8	A Single-Blind Study Evaluating the Efficacy of Gold Nanoparticle Photothermal-Assisted Liposuction in an Ex Vivo Human Tissue Model. Aesthetic Surgery Journal, 2018, 38, 1213-1224.	0.9	5
9	Chemical amplification accelerates reactive oxygen species triggered polymeric degradation. Biomaterials Science, 2018, 6, 107-114.	2.6	18
10	Leveraging Spectral Matching between Photosensitizers and Upconversion Nanoparticles for 808 nm-Activated Photodynamic Therapy. Chemistry of Materials, 2018, 30, 3991-4000.	3.2	46
11	Inflammation-Responsive Drug-Conjugated Dextran Nanoparticles Enhance Anti-Inflammatory Drug Efficacy. ACS Applied Materials & Samp; Interfaces, 2018, 10, 40378-40387.	4.0	75
12	Diseaseâ€Triggered Drug Release Effectively Prevents Acute Inflammatory Flareâ€Ups, Achieving Reduced Dosing. Small, 2018, 14, e1800703.	5.2	18
13	Delivery of Cargo with a Bioelectronic Trigger. ACS Applied Materials & Delivery of Cargo with a Bioelectronic Trigger. ACS Applied Materials & Delivery of Cargo with a Bioelectronic Trigger. ACS Applied Materials & Delivery of Cargo with a Bioelectronic Trigger. ACS Applied Materials & Delivery of Cargo with a Bioelectronic Trigger. ACS Applied Materials & Delivery of Cargo with a Bioelectronic Trigger. ACS Applied Materials & Delivery of Cargo with a Bioelectronic Trigger. ACS Applied Materials & Delivery of Cargo with a Bioelectronic Trigger. ACS Applied Materials & Delivery of Cargo with a Bioelectronic Trigger. ACS Applied Materials & Delivery of Cargo with a Bioelectronic Trigger. ACS Applied Materials & Delivery of Cargo with a Bioelectronic Trigger. ACS Applied Materials & Delivery of Cargo with a Bioelectronic Trigger. ACS Applied Materials & Delivery of Cargo with a Bioelectronic Trigger. ACS Applied Materials & Delivery of Cargo with a Bioelectronic Trigger. ACS Applied Materials & Delivery of Cargo with a Bioelectronic Trigger. ACS Applied Materials & Delivery of Cargo with a Bioelectronic Trigger. ACS Applied Materials & Delivery of Cargo with a Bioelectronic Trigger. ACS Applied Materials & Delivery of Cargo with a Bioelectronic Trigger. ACS Applied Materials & Delivery of Cargo with a Bioelectronic Trigger. ACS Applied Materials & Delivery of Cargo with a Bioelectronic Trigger. ACS Applied Materials & Delivery of Cargo with a Bioelectronic Trigger. ACS Applied Materials & Delivery of Cargo with a Bioelectronic Trigger. ACS Applied Materials & Delivery of Cargo with a Bioelectronic Trigger. ACS Applied Materials & Delivery of Cargo with a Bioelectronic Trigger. ACS Applied Materials & Delivery of Cargo with a Bioelectronic Trigger. ACS Applied Materials & Delivery of Cargo with a Bioelectronic Trigger. ACS Applied Materials & Delivery of Cargo with ACS Applie	4.0	13
14	Direct Evidence for Coupled Surface and Concentration Quenching Dynamics in Lanthanide-Doped Nanocrystals. Journal of the American Chemical Society, 2017, 139, 3275-3282.	6.6	420
15	Distinct ON/OFF fluorescence signals from dual-responsive activatable nanoprobes allows detection of inflammation with improved contrast. Biomaterials, 2017, 133, 119-131.	5.7	28
16	Biorthogonal click chemistry on poly(lactic-co-glycolic acid)-polymeric particles. Biomaterials Science, 2017, 5, 211-215.	2.6	11
17	Review of the progress toward achieving heat confinementâ€"the holy grail of photothermal therapy. Journal of Biomedical Optics, 2017, 22, 080901.	1.4	59
18	Simultaneous Enhancement of Photoluminescence, MRI Relaxivity, and CT Contrast by Tuning the Interfacial Layer of Lanthanide Heteroepitaxial Nanoparticles. Nano Letters, 2017, 17, 4873-4880.	4.5	61

#	Article	IF	CITATIONS
19	Enhanced UV upconversion emission using plasmonic nanocavities. Optics Express, 2016, 24, 13999.	1.7	16
20	Compact Micellization: A Strategy for Ultrahigh T ₁ Magnetic Resonance Contrast with Gadolinium-Based Nanocrystals. ACS Nano, 2016, 10, 8299-8307.	7.3	46
21	Efficient red light photo-uncaging of active molecules in water upon assembly into nanoparticles. Chemical Science, 2016, 7, 2392-2398.	3.7	36
22	Layered hydrogels accelerate iPSC-derived neuronal maturation and reveal migration defects caused by MeCP2 dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3185-3190.	3.3	136
23	Degradable Acetalated Dextran Microparticles for Tunable Release of an Engineered Hepatocyte Growth Factor Fragment. ACS Biomaterials Science and Engineering, 2016, 2, 197-204.	2.6	26
24	Nanogels as imaging agents for modalities spanning the electromagnetic spectrum. Materials Horizons, 2016, 3, 21-40.	6.4	49
25	Nanogels from Metal-Chelating Crosslinkers as Versatile Platforms Applied to Copper-64 PET Imaging of Tumors and Metastases. Theranostics, 2015, 5, 277-288.	4.6	42
26	Light-responsive nanoparticle depot to control release of a small molecule angiogenesis inhibitor in the posterior segment of the eye. Journal of Controlled Release, 2015, 200, 71-77.	4.8	91
27	Haptotaxis is Cell Type Specific and Limited by Substrate Adhesiveness. Cellular and Molecular Bioengineering, 2015, 8, 530-542.	1.0	31
28	Light-Triggered Intramolecular Cyclization in Poly(lactic- <i>co</i> -glycolic acid)-Based Polymers for Controlled Degradation. Macromolecules, 2015, 48, 3166-3172.	2.2	48
29	Short Soluble Coumarin Crosslinkers for Light-Controlled Release of Cells and Proteins from Hydrogels. Biomacromolecules, 2015, 16, 3286-3296.	2.6	39
30	Light-triggered chemical amplification to accelerate degradation and release from polymeric particles. Chemical Communications, 2015, 51, 16980-16983.	2.2	21
31	Photocontrolled release using one-photon absorption of visible or NIR light. Journal of Controlled Release, 2015, 219, 18-30.	4.8	112
32	Intramyocardial injection of hydrogel with high interstitial spread does not impact action potential propagation. Acta Biomaterialia, 2015, 26, 13-22.	4.1	28
33	In vivo visible light-triggered drug release from an implanted depot. Chemical Science, 2015, 6, 335-341.	3.7	63
34	Engineering upconversion emission spectra using plasmonic nanocavities. Optics Letters, 2014, 39, 3710.	1.7	4
35	Exploiting Oxidative Microenvironments in the Body as Triggers for Drug Delivery Systems. Antioxidants and Redox Signaling, 2014, 21, 730-754.	2.5	113
36	Gold Nanoparticle-assisted Selective Photothermolysis of Adipose Tissue (NanoLipo). Plastic and Reconstructive Surgery - Global Open, 2014, 2, e283.	0.3	16

3

#	Article	IF	Citations
37	Near-Infrared-Induced Heating of Confined Water in Polymeric Particles for Efficient Payload Release. ACS Nano, 2014, 8, 4815-4826.	7.3	7 5
38	Highest Efficiency Two-Photon Degradable Copolymer for Remote Controlled Release. ACS Macro Letters, 2013, 2, 683-687.	2.3	24
39	Low Power Upconverted Near″R Light for Efficient Polymeric Nanoparticle Degradation and Cargo Release. Advanced Materials, 2013, 25, 3733-3738.	11.1	107
40	Tunable Protein Release from Acetalated Dextran Microparticles: A Platform for Delivery of Protein Therapeutics to the Heart Post-MI. Biomacromolecules, 2013, 14, 3927-3935.	2.6	48
41	Metal chelating crosslinkers form nanogels with high chelation stability. Journal of Materials Chemistry B, 2013, 1, 6359.	2.9	45
42	Intramolecular Cyclization for Stimuli-Controlled Depolymerization of Polycaprolactone Particles Leading to Disassembly and Payload Release. ACS Macro Letters, 2013, 2, 432-435.	2.3	50
43	Intramolecular cyclization assistance for fast degradation of ornithineâ€based poly(ester amide)s. Journal of Polymer Science Part A, 2013, 51, 3783-3790.	2.5	26
44	Density Gradient Multilayered Polymerization (DGMP): A Novel Technique for Creating Multi-compartment, Customizable Scaffolds for Tissue Engineering. Journal of Visualized Experiments, 2013, , .	0.2	5
45	Potential Bone Replacement Materials Prepared by Two Methods. Materials Research Society Symposia Proceedings, 2012, 1418, 177.	0.1	57
46	Biocompatible Polymeric Nanoparticles Degrade and Release Cargo in Response to Biologically Relevant Levels of Hydrogen Peroxide. Journal of the American Chemical Society, 2012, 134, 15758-15764.	6.6	502
47	Iron Oxide Nanoparticle-Based Magnetic Resonance Method to Monitor Release Kinetics from Polymeric Particles with High Resolution. Analytical Chemistry, 2012, 84, 7779-7784.	3.2	7
48	Photochemical mechanisms of light-triggered release from nanocarriers. Advanced Drug Delivery Reviews, 2012, 64, 1005-1020.	6.6	425
49	Single UV or Near IR Triggering Event Leads to Polymer Degradation into Small Molecules. ACS Macro Letters, 2012, 1, 922-926.	2.3	120
50	An Extracellular MRI Polymeric Contrast Agent That Degrades at Physiological pH. Molecular Pharmaceutics, 2012, 9, 1911-1918.	2.3	21
51	Density Gradient Multilayer Polymerization for Creating Complex Tissue. Advanced Materials, 2012, 24, 1466-1470.	11.1	43
52	Inflammation Responsive Logic Gate Nanoparticles for the Delivery of Proteins. Bioconjugate Chemistry, 2011, 22, 1416-1421.	1.8	120
53	Low Power, Biologically Benign NIR Light Triggers Polymer Disassembly. Macromolecules, 2011, 44, 8590-8597.	2.2	117
54	Multiresponse Strategies To Modulate Burst Degradation and Release from Nanoparticles. ACS Nano, 2010, 4, 5930-5936.	7.3	110

#	Article	IF	CITATIONS
55	UV and Near-IR Triggered Release from Polymeric Nanoparticles. Journal of the American Chemical Society, 2010, 132, 9540-9542.	6.6	343