List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1620283/publications.pdf Version: 2024-02-01

FUNA KONEN

#	Article	IF	CITATIONS
1	Functional rafts in cell membranes. Nature, 1997, 387, 569-572.	27.8	8,942
2	A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD. Neuron, 2011, 72, 257-268.	8.1	3,833
3	Cellular cholesterol trafficking and compartmentalization. Nature Reviews Molecular Cell Biology, 2008, 9, 125-138.	37.0	1,162
4	How Cells Handle Cholesterol. Science, 2000, 290, 1721-1726.	12.6	1,118
5	Roles of lipid rafts in membrane transport. Current Opinion in Cell Biology, 2001, 13, 470-477.	5.4	587
6	The impact of low-frequency and rare variants on lipid levels. Nature Genetics, 2015, 47, 589-597.	21.4	310
7	A Caveolin Dominant Negative Mutant Associates with Lipid Bodies and Induces Intracellular Cholesterol Imbalance. Journal of Cell Biology, 2001, 152, 1057-1070.	5.2	294
8	Seipin regulates <scp>ER</scp> –lipid droplet contacts and cargo delivery. EMBO Journal, 2016, 35, 2699-2716.	7.8	258
9	Different requirements for NSF, SNAP, and Rab proteins in apical and basolateral transport in MDCK cells. Cell, 1995, 81, 571-580.	28.9	235
10	BODIPYâ€Cholesterol: A New Tool to Visualize Sterol Trafficking in Living Cells and Organisms. Traffic, 2008, 9, 1839-1849.	2.7	221
11	Mechanisms for Cellular Cholesterol Transport: Defects and Human Disease. Physiological Reviews, 2006, 86, 1237-1261.	28.8	185
12	Aster Proteins Facilitate Nonvesicular Plasma Membrane to ER Cholesterol Transport in Mammalian Cells. Cell, 2018, 175, 514-529.e20.	28.9	177
13	The OSBP-related protein family in humans. Journal of Lipid Research, 2001, 42, 1203-1213.	4.2	177
14	Protein and lipid sorting from thetrans–Golgi network to the plasma membrane in polarized cells. Seminars in Cell and Developmental Biology, 1998, 9, 503-509.	5.0	164
15	Prohibitin, an antiproliferative protein, is localized to mitochondria. FEBS Letters, 1995, 358, 273-277.	2.8	163
16	Zebrafish: gaining popularity in lipid research. Biochemical Journal, 2010, 429, 235-242.	3.7	162
17	Dynamic association of human insulin receptor with lipid rafts in cells lacking caveolae. EMBO Reports, 2002, 3, 95-100.	4.5	155
18	Seipin Facilitates Triglyceride Flow to Lipid Droplet and Counteracts Droplet Ripening via Endoplasmic Reticulum Contact. Developmental Cell, 2019, 50, 478-493.e9.	7.0	149

#	Article	IF	CITATIONS
19	Caveolins and Cellular Cholesterol Balance. Traffic, 2000, 1, 212-217.	2.7	122
20	Significance of Sterol Structural Specificity. Journal of Biological Chemistry, 2006, 281, 348-355.	3.4	121
21	Modulation of Cellular Cholesterol Transport and Homeostasis by Rab11. Molecular Biology of the Cell, 2002, 13, 3107-3122.	2.1	118
22	An efficient auxin-inducible degron system with low basal degradation in human cells. Nature Methods, 2019, 16, 866-869.	19.0	117
23	Association of tamoxifen resistance and lipid reprogramming in breast cancer. BMC Cancer, 2018, 18, 850.	2.6	113
24	Cognitive deficit and development of motor impairment in a mouse model of Niemann-Pick type C disease. Behavioural Brain Research, 2002, 132, 1-10.	2.2	110
25	Desmosterol and DHCR24: Unexpected new directions for a terminal step in cholesterol synthesis. Progress in Lipid Research, 2013, 52, 666-680.	11.6	101
26	Lysosomal integral membrane protein-2 (LIMP-2/SCARB2) is involved in lysosomal cholesterol export. Nature Communications, 2019, 10, 3521.	12.8	99
27	PNPLA3 mediates hepatocyte triacylglycerol remodeling. Journal of Lipid Research, 2014, 55, 739-746.	4.2	96
28	Role of Cholesterol in Developing T-Tubules: Analogous Mechanisms for T-Tubule and Caveolae Biogenesis. Traffic, 2000, 1, 326-341.	2.7	94
29	Human PNPLA3-I148M variant increases hepatic retention of polyunsaturated fatty acids. JCI Insight, 2019, 4, .	5.0	93
30	LDL Cholesterol Recycles to the Plasma Membrane via a Rab8a-Myosin5b-Actin-Dependent Membrane Transport Route. Developmental Cell, 2013, 27, 249-262.	7.0	92
31	Role of ORPs in Sterol Transport from Plasma Membrane to ER and Lipid Droplets in Mammalian Cells. Traffic, 2011, 12, 218-231.	2.7	91
32	Cellular pathology of Niemann–Pick type C disease. Seminars in Cell and Developmental Biology, 2004, 15, 445-454.	5.0	89
33	Rab8-dependent Recycling Promotes Endosomal Cholesterol Removal in Normal and Sphingolipidosis Cells. Molecular Biology of the Cell, 2007, 18, 47-56.	2.1	89
34	Lipid Droplet Nucleation. Trends in Cell Biology, 2021, 31, 108-118.	7.9	88
35	Sterol binding by OSBP-related protein 1L regulates late endosome motility and function. Cellular and Molecular Life Sciences, 2011, 68, 537-551.	5.4	87
36	Defective endocytic trafficking of NPC1 and NPC2 underlying infantile Niemann-Pick type C disease. Human Molecular Genetics, 2003, 12, 257-272.	2.9	86

#	Article	IF	CITATIONS
37	Pinkbar is an epithelial-specific BAR domain protein that generates planar membrane structures. Nature Structural and Molecular Biology, 2011, 18, 902-907.	8.2	84
38	Membrane Curvature Catalyzes Lipid Droplet Assembly. Current Biology, 2020, 30, 2481-2494.e6.	3.9	80
39	Sphingolipid metabolic flow controls phosphoinositide turnover at the <i>trans</i> â€Golgi network. EMBO Journal, 2017, 36, 1736-1754.	7.8	79
40	Overexpression of OSBP-related protein 2 (ORP2) induces changes in cellular cholesterol metabolism and enhances endocytosis. Biochemical Journal, 2005, 390, 273-283.	3.7	77
41	Synthesis and Biosynthetic Trafficking of Membrane Lipids. Cold Spring Harbor Perspectives in Biology, 2011, 3, a004713-a004713.	5.5	74
42	MLN64 Is Involved in Actin-mediated Dynamics of Late Endocytic Organelles. Molecular Biology of the Cell, 2005, 16, 3873-3886.	2.1	71
43	ORP2, a homolog of oxysterol binding protein, regulates cellular cholesterol metabolism. Journal of Lipid Research, 2002, 43, 245-255.	4.2	71
44	Role for LAMP-2 in endosomal cholesterol transport. Journal of Cellular and Molecular Medicine, 2011, 15, 280-295.	3.6	70
45	Elevated Levels of StAR-Related Lipid Transfer Protein 3 Alter Cholesterol Balance and Adhesiveness of Breast Cancer Cells. American Journal of Pathology, 2015, 185, 987-1000.	3.8	68
46	Macrophage cholesterol transport: a critical player in foam cell formation. Annals of Medicine, 2003, 35, 146-155.	3.8	67
47	Endocytic Trafficking of Sphingomyelin Depends on Its Acyl Chain Length. Molecular Biology of the Cell, 2007, 18, 5113-5123.	2.1	65
48	NDRG1 functions in LDL receptor trafficking by regulating endosomal recycling and degradation. Journal of Cell Science, 2013, 126, 3961-71.	2.0	64
49	Genetic Defects of Intracellular-Membrane Transport. New England Journal of Medicine, 2000, 343, 1095-1104.	27.0	63
50	Defective insulin receptor activation and altered lipid rafts in Niemann–Pick type C disease hepatocytes. Biochemical Journal, 2005, 391, 465-472.	3.7	61
51	D38-cholesterol as a Raman active probe for imaging intracellular cholesterol storage. Journal of Biomedical Optics, 2015, 21, 061003.	2.6	61
52	LDL–cholesterol transport to the endoplasmic reticulum. Current Opinion in Lipidology, 2016, 27, 282-287.	2.7	61
53	When intracellular logistics fails - genetic defects in membrane trafficking. Journal of Cell Science, 2006, 119, 5031-5045.	2.0	60
54	Mobilization of late-endosomal cholesterol is inhibited by Rab guanine nucleotide dissociation inhibitor. Current Biology, 2000, 10, 95-98.	3.9	56

#	Article	IF	CITATIONS
55	Mitochondrial biogenesis is transcriptionally repressed in lysosomal lipid storage diseases. ELife, 2019, 8, .	6.0	56
56	Annexin A6 modulates TBC1D15/Rab7/StARD3 axis to control endosomal cholesterol export in NPC1 cells. Cellular and Molecular Life Sciences, 2020, 77, 2839-2857.	5.4	54
57	Seipin traps triacylglycerols to facilitate their nanoscale clustering in the endoplasmic reticulum membrane. PLoS Biology, 2021, 19, e3000998.	5.6	54
58	ORP2, a homolog of oxysterol binding protein, regulates cellular cholesterol metabolism. Journal of Lipid Research, 2002, 43, 245-55.	4.2	52
59	Machine learning of human plasma lipidomes for obesity estimation in a large population cohort. PLoS Biology, 2019, 17, e3000443.	5.6	51
60	FTY720 Stimulates 27-Hydroxycholesterol Production and Confers Atheroprotective Effects in Human Primary Macrophages. Circulation Research, 2010, 106, 720-729.	4.5	50
61	Enzymatic Oxidation of Cholesterol: Properties and Functional Effects of Cholestenone in Cell Membranes. PLoS ONE, 2014, 9, e103743.	2.5	50
62	Desmosterol suppresses macrophage inflammasome activation and protects against vascular inflammation and atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	50
63	The CCHCR1 (HCR) gene is relevant for skin steroidogenesis and downregulated in cultured psoriatic keratinocytes. Journal of Molecular Medicine, 2007, 85, 589-601.	3.9	49
64	LAPTM4B facilitates late endosomal ceramide export to control cell death pathways. Nature Chemical Biology, 2015, 11, 799-806.	8.0	49
65	Mechanisms of cellular cholesterol compartmentalization: recent insights. Current Opinion in Cell Biology, 2018, 53, 77-83.	5.4	49
66	Role for formin-like 1-dependent acto-myosin assembly in lipid droplet dynamics and lipid storage. Nature Communications, 2017, 8, 14858.	12.8	48
67	Moving out but keeping in touch: contacts between endoplasmic reticulum and lipid droplets. Current Opinion in Cell Biology, 2019, 57, 64-70.	5.4	48
68	Secretion of Sterols and the NPC2 Protein from Primary Astrocytes. Journal of Biological Chemistry, 2004, 279, 48654-48662.	3.4	44
69	Lipid Microdomains and Insulin Resistance: Is There a Connection?. Science Signaling, 2005, 2005, pe3-pe3.	3.6	44
70	Cln5-deficiency in mice leads to microglial activation, defective myelination and changes in lipid metabolism. Neurobiology of Disease, 2012, 46, 19-29.	4.4	43
71	In vitro mutagenesis helps to unravel the biological consequences of aspartylglucosaminuria mutation. Genomics, 1991, 11, 206-211.	2.9	42
72	Palmitoyl protein thioesterase 1 (Ppt1)-deficient mouse neurons show alterations in cholesterol metabolism and calcium homeostasis prior to synaptic dysfunction. Neurobiology of Disease, 2007, 28, 52-64.	4.4	42

#	Article	IF	CITATIONS
73	Comparison of cholesterol and its direct precursors along the biosynthetic pathway: Effects of cholesterol, desmosterol and 7-dehydrocholesterol on saturated and unsaturated lipid bilayers. Journal of Chemical Physics, 2008, 129, 154508.	3.0	42
74	Cholesterol Substitution Increases the Structural Heterogeneity of Caveolae. Journal of Biological Chemistry, 2008, 283, 14610-14618.	3.4	41
75	Cholesterol transport between cellular membranes: A balancing act between interconnected lipid fluxes. Developmental Cell, 2021, 56, 1430-1436.	7.0	41
76	Differential Mobilization of Newly Synthesized Cholesterol and Biosynthetic Sterol Precursors from Cells. Journal of Biological Chemistry, 2003, 278, 19844-19851.	3.4	39
77	Cytoplasmic oxysterol-binding proteins: sterol sensors or transporters?. Chemistry and Physics of Lipids, 2011, 164, 443-450.	3.2	39
78	Rab8 Regulates ABCA1 Cell Surface Expression and Facilitates Cholesterol Efflux in Primary Human Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 883-888.	2.4	37
79	Cholesterol precursors. Current Opinion in Lipidology, 2014, 25, 133-139.	2.7	37
80	Alleviation of seipinopathy-related ER stress by triglyceride storage. Human Molecular Genetics, 2013, 22, 1157-1166.	2.9	36
81	Continuous Grading of Early Fibrosis in NAFLD Using Label-Free Imaging: A Proof-of-Concept Study. PLoS ONE, 2016, 11, e0147804.	2.5	34
82	ORP2 interacts with phosphoinositides and controls the subcellular distribution of cholesterol. Biochimie, 2019, 158, 90-101.	2.6	34
83	ORP2 couples LDLâ€cholesterol transport to FAK activation by endosomal cholesterol/PI(4,5)P ₂ exchange. EMBO Journal, 2021, 40, e106871.	7.8	34
84	What dictates the accumulation of desmosterol in the developing brain?. FASEB Journal, 2013, 27, 865-870.	0.5	33
85	Transcytosis of the polymeric immunoglobulin receptor in cultured hippocampal neurons. Current Biology, 1993, 3, 635-644.	3.9	32
86	Polarized THG Microscopy Identifies Compositionally Different Lipid Droplets in Mammalian Cells. Biophysical Journal, 2014, 107, 2230-2236.	0.5	31
87	ORP10, a cholesterol binding protein associated with microtubules, regulates apolipoprotein B-100 secretion. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 1472-1484.	2.4	30
88	A Ceramide-Regulated Element in the Late Endosomal Protein LAPTM4B Controls Amino Acid Transporter Interaction. ACS Central Science, 2018, 4, 548-558.	11.3	29
89	Seipin localizes at endoplasmic-reticulum-mitochondria contact sites to control mitochondrial calcium import and metabolism in adipocytes. Cell Reports, 2022, 38, 110213.	6.4	29
90	Murine cathepsin D deficiency is associated with dysmyelination/myelin disruption and accumulation of cholesteryl esters in the brain. Journal of Neurochemistry, 2010, 112, 193-203.	3.9	28

#	Article	IF	CITATIONS
91	A loss-of-function variant in OSBPL1A predisposes to low plasma HDL cholesterol levels and impaired cholesterol efflux capacity. Atherosclerosis, 2016, 249, 140-147.	0.8	28
92	Use of <scp>BODIPY</scp> â€Cholesterol (<scp>TF</scp> â€Chol) for Visualizing Lysosomal Cholesterol Accumulation. Traffic, 2016, 17, 1054-1057.	2.7	28
93	Concerted regulation of npc2 binding to endosomal/lysosomal membranes by bis(monoacylglycero)phosphate and sphingomyelin. PLoS Computational Biology, 2017, 13, e1005831.	3.2	27
94	OSBP-related protein-2 (ORP2): a novel Akt effector that controls cellular energy metabolism. Cellular and Molecular Life Sciences, 2018, 75, 4041-4057.	5.4	27
95	Tracking Sphingosine Metabolism and Transport inÂSphingolipidoses: <scp>NPC1</scp> Deficiency as a Test Case. Traffic, 2012, 13, 1234-1243.	2.7	24
96	Cellular sterol trafficking and metabolism: spotlight on structure. Current Opinion in Cell Biology, 2008, 20, 371-377.	5.4	23
97	Plant sterols, cholesterol precursors and oxysterols: Minute concentrations—Major physiological effects. Journal of Steroid Biochemistry and Molecular Biology, 2017, 169, 4-9.	2.5	23
98	Severe neurodegenerative disease in brothers with homozygous mutation in POLR1A. European Journal of Human Genetics, 2017, 25, 315-323.	2.8	23
99	Molecular mechanisms of intracellular cholesterol transport. Current Opinion in Lipidology, 1997, 8, 60-64.	2.7	22
100	DGAT1 activity synchronises with mitophagy to protect cells from metabolic rewiring by iron  depletion. EMBO Journal, 2022, 41, e109390.	7.8	22
101	Endosomal Actin Remodeling by Coronin-1A Controls Lipoprotein Uptake and Degradation in Macrophages. Circulation Research, 2012, 110, 450-455.	4.5	20
102	Amyloid precursor protein α―and βâ€cleaved ectodomains exert opposing control of cholesterol homeostasis <i>via</i> SREBP2. FASEB Journal, 2014, 28, 849-860.	0.5	20
103	<i>Trim37</i> -deficient mice recapitulate several features of the multi-organ disorder Mulibrey nanism. Biology Open, 2016, 5, 584-595.	1.2	19
104	Stromal CAVIN1 Controls Prostate Cancer Microenvironment and Metastasis by Modulating Lipid Distribution and Inflammatory Signaling. Molecular Cancer Research, 2020, 18, 1414-1426.	3.4	19
105	Niemann-Pick C1 Modulates Hepatic Triglyceride Metabolism and Its Genetic Variation Contributes to Serum Triglyceride Levels. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1614-1620.	2.4	17
106	Fatty Acyl Esterification and Deesterification of 17Î ² -Estradiol in Human Breast Subcutaneous Adipose Tissue. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 3349-3356.	3.6	15
107	Cholesterol Dependence of Collagen and Echovirus 1 Trafficking along the Novel α2β1 Integrin Internalization Pathway. PLoS ONE, 2013, 8, e55465.	2.5	15
108	Highâ€content imaging and structureâ€based predictions reveal functional differences between Niemannâ€Pick C1 variants. Traffic, 2020, 21, 386-397.	2.7	14

#	Article	IF	CITATIONS
109	The endocytic pathways of a secretory granule membrane protein in HEK293 cells: PAM and EGF traverse a dynamic multivesicular body network together. European Journal of Cell Biology, 2017, 96, 407-417.	3.6	13
110	Seipin-Mediated Contacts as Gatekeepers of Lipid Flux at the Endoplasmic Reticulum–Lipid Droplet NexusÂ. Contact (Thousand Oaks (Ventura County, Calif)), 2020, 3, 251525642094582.	1.3	13
111	ORP2, a cholesterol transporter, regulates angiogenic signaling in endothelial cells. FASEB Journal, 2020, 34, 14671-14694.	0.5	13
112	HSP70 induces liver X receptor pathway activation and cholesterol reduction inÂvitro and inÂvivo. Molecular Metabolism, 2019, 28, 135-143.	6.5	12
113	Mutations causing aspartylglucosaminuria (AGU): A lysosomal accumulation disease. Human Mutation, 1992, 1, 361-365.	2.5	11
114	Role of lysosomal acid lipase in the intracellular metabolism of LDL-transported dehydroepiandrosterone-fatty acyl esters. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E1455-E1461.	3.5	11
115	Specific subdomain localization of ER resident proteins and membrane contact sites resolved by electron microscopy. European Journal of Cell Biology, 2021, 100, 151180.	3.6	11
116	Cholesterol transport in the late endocytic pathway: Roles of ORP family proteins. Journal of Steroid Biochemistry and Molecular Biology, 2022, 216, 106040.	2.5	11
117	Introducing inducible fluorescent split cholesterol oxidase to mammalian cells. Journal of Biological Chemistry, 2017, 292, 8811-8822.	3.4	10
118	Lipoprotein-mediated delivery of BODIPY-labeled sterol and sphingolipid analogs reveals lipid transport mechanisms in mammalian cells. Chemistry and Physics of Lipids, 2016, 194, 29-36.	3.2	8
119	LAPTM4B controls the sphingolipid and ether lipid signature of small extracellular vesicles. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158855.	2.4	8
120	Regression plane concept for analysing continuous cellular processes with machine learning. Nature Communications, 2021, 12, 2532.	12.8	8
121	Huntington disease in Finland: a molecular and genealogical study. Human Genetics, 1992, 89, 275-80.	3.8	7
122	The cell biology of lipid droplets: More than just a phase. Seminars in Cell and Developmental Biology, 2020, 108, 1-3.	5.0	6
123	Lysosome Associated Protein Transmembrane 4B-24 Is the Predominant Protein Isoform in Human Tissues and Undergoes Rapid, Nutrient-Regulated Turnover. American Journal of Pathology, 2020, 190, 2018-2028.	3.8	5
124	Lipid droplet biogenesis. Current Opinion in Lipidology, 2011, 22, 505-506.	2.7	4
125	Shuttling HDL Cholesterol to the Membrane via Metastable Receptor Multimers. Developmental Cell, 2019, 50, 257-258.	7.0	4
126	Multiparametric platform for profiling lipid trafficking in human leukocytes. Cell Reports Methods, 2022, 2, 100166.	2.9	3

#	Article	lF	CITATIONS
127	Genetics and molecular biology: brain cholesterol balance – not such a closed circuit after all. Current Opinion in Lipidology, 2010, 21, 93-94.	2.7	2
128	Preface to the proceedings of the Satellite Symposium of the EAS 76th Congress and the XVth Paavo Nurmi Symposium. Annals of Medicine, 2008, 40, 4-4.	3.8	1
129	Lipid–protein interactions. Current Opinion in Lipidology, 2012, 23, 581-583.	2.7	1
130	Language-Agnostic Reproducible Data Analysis Using Literate Programming. PLoS ONE, 2016, 11, e0164023.	2.5	1
131	Applications of PCR in the Diseases of Genetic Isolates. Annals of Medicine, 1992, 24, 191-194.	3.8	0
132	Genetics and molecular biology. Current Opinion in Lipidology, 2002, 13, 441-443.	2.7	0
133	Genetics and molecular biology. Current Opinion in Lipidology, 2003, 14, 219-221.	2.7	0
134	Genetics and molecular biology. Current Opinion in Lipidology, 2005, 16, 695-697.	2.7	0
135	Genetics and molecular biology: a cholesterol-lowering drug with antibacterial properties. Current Opinion in Lipidology, 2008, 19, 324-325.	2.7	0
136	Genetics and molecular biology: identifying adipocytes and their origin. Current Opinion in Lipidology, 2009, 20, 75-76.	2.7	0
137	Lipid transport takes the â€~omics' highway. Current Opinion in Lipidology, 2015, 26, 348-349.	2.7	0
138	Inter- and intra-membrane lipid transport. , 2021, , 457-486.		0
139	Genetics and molecular biology. Current Opinion in Lipidology, 1998, 9, 169-170.	2.7	0
140	Deuterated Cholesterol Uptake Revealed With Stimulated Raman Microscopy. , 2015, , .		0
141	Machine learning of human plasma lipidomes for obesity estimation in a large population cohort. , 2019, 17, e3000443.		0
142	Machine learning of human plasma lipidomes for obesity estimation in a large population cohort. , 2019, 17, e3000443.		0
143	Machine learning of human plasma lipidomes for obesity estimation in a large population cohort. , 2019, 17, e3000443.		0
144	Machine learning of human plasma lipidomes for obesity estimation in a large population cohort. , 2019, 17, e3000443.		0

#	Article	IF	CITATIONS
145	Machine learning of human plasma lipidomes for obesity estimation in a large population cohort. , 2019, 17, e3000443.		0