
Victor Gomes Lauriano de Souza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1620232/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoparticles in food packaging: Biodegradability and potential migration to food—A review. Food Packaging and Shelf Life, 2016, 8, 63-70.	3.3	250
2	Physical properties of chitosan films incorporated with natural antioxidants. Industrial Crops and Products, 2017, 107, 565-572.	2.5	229
3	Nisin and other antimicrobial peptides: Production, mechanisms of action, and application in active food packaging. Innovative Food Science and Emerging Technologies, 2018, 48, 179-194.	2.7	154
4	Activity of chitosan-montmorillonite bionanocomposites incorporated with rosemary essential oil: From in vitro assays to application in fresh poultry meat. Food Hydrocolloids, 2019, 89, 241-252.	5.6	132
5	Chitosan/montmorillonite bionanocomposites incorporated with rosemary and ginger essential oil as packaging for fresh poultry meat. Food Packaging and Shelf Life, 2018, 17, 142-149.	3.3	115
6	Structure and Applications of Pectin in Food, Biomedical, and Pharmaceutical Industry: A Review. Coatings, 2021, 11, 922.	1.2	107
7	Chitosan Composites in Packaging Industry—Current Trends and Future Challenges. Polymers, 2020, 12, 417.	2.0	105
8	Cellulose acetate active films incorporated with oregano (Origanum vulgare) essential oil and organophilic montmorillonite clay control the growth of phytopathogenic fungi. Food Packaging and Shelf Life, 2016, 9, 69-78.	3.3	96
9	Shelf Life Assessment of Fresh Poultry Meat Packaged in Novel Bionanocomposite of Chitosan/Montmorillonite Incorporated with Ginger Essential Oil. Coatings, 2018, 8, 177.	1.2	76
10	Eco-Friendly ZnO/Chitosan Bionanocomposites Films for Packaging of Fresh Poultry Meat. Coatings, 2020, 10, 110.	1.2	70
11	Valorization of energy crops as a source for nanocellulose production – Current knowledge and future prospects. Industrial Crops and Products, 2019, 140, 111642.	2.5	69
12	Bio-Based Sensors for Smart Food Packaging—Current Applications and Future Trends. Sensors, 2021, 21, 2148.	2.1	69
13	Understanding the Barrier and Mechanical Behavior of Different Nanofillers in Chitosan Films for Food Packaging. Polymers, 2021, 13, 721.	2.0	63
14	Bionanocomposites of chitosan/montmorillonite incorporated with Rosmarinus officinalis essential oil: Development and physical characterization. Food Packaging and Shelf Life, 2018, 16, 148-156.	3.3	60
15	Physical and Morphological Characterization of Chitosan/Montmorillonite Films Incorporated with Ginger Essential Oil. Coatings, 2019, 9, 700.	1.2	60
16	Methodologies to Assess the Biodegradability of Bio-Based Polymers—Current Knowledge and Existing Gaps. Polymers, 2022, 14, 1359.	2.0	43
17	Novel Active Food Packaging Films Based on Whey Protein Incorporated with Seaweed Extract: Development, Characterization, and Application in Fresh Poultry Meat. Coatings, 2021, 11, 229.	1.2	41
18	In vitro bioactivity of novel chitosan bionanocomposites incorporated with different essential oils. Industrial Crops and Products, 2019, 140, 111563.	2.5	38

VICTOR GOMES LAURIANO DE

#	Article	IF	CITATIONS
19	Development of cranberry extract films for the enhancement of food packaging antimicrobial properties. Food Packaging and Shelf Life, 2021, 28, 100646.	3.3	26
20	Biodegradable Chitosan Films with ZnO Nanoparticles Synthesized Using Food Industry By-Products—Production and Characterization. Coatings, 2021, 11, 646.	1.2	21
21	Strategies to Improve the Barrier and Mechanical Properties of Pectin Films for Food Packaging: Comparing Nanocomposites with Bilayers. Coatings, 2022, 12, 108.	1.2	19
22	Production of Nanocellulose from Lignocellulosic Biomass Wastes: Prospects and Limitations. Lecture Notes in Electrical Engineering, 2019, , 719-725.	0.3	14
23	Micro and nanocellulose extracted from energy crops as reinforcement agents in chitosan films. Industrial Crops and Products, 2022, 186, 115247.	2.5	13
24	Antioxidant Migration Studies in Chitosan Films Incorporated with Plant Extracts. Journal of Renewable Materials, 2018, , .	1.1	12
25	Pre-Treatment of Lignocellulosic Biomass (Empty Fruit Bunch) using Ionic Liquids as Solvents. , 2014, , .		Ο