
## Euan G Nisbet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1619240/publications.pdf Version: 2024-02-01



FILAN C. NISRET

| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Stable carbon isotope signatures of methane from a Finnish subarctic wetland. Tellus, Series B:<br>Chemical and Physical Meteorology, 2022, 64, 18818.                                                                                                        | 0.8 | 31        |
| 2  | Methane emissions in Kuwait: Plume identification, isotopic characterisation and inventory verification. Atmospheric Environment, 2022, 268, 118763.                                                                                                          | 1.9 | 13        |
| 3  | Street-level methane emissions of Bucharest, Romania and the dominance of urban wastewater<br>Atmospheric Environment: X, 2022, 13, 100153.                                                                                                                   | 0.8 | 8         |
| 4  | lsotopic signatures of methane emissions from tropical fires, agriculture and wetlands: the MOYA<br>and ZWAMPS flights. Philosophical Transactions Series A, Mathematical, Physical, and Engineering<br>Sciences, 2022, 380, 20210112.                        | 1.6 | 6         |
| 5  | Stable isotopic signatures of methane from waste sources through atmospheric measurements.<br>Atmospheric Environment, 2022, 276, 119021.                                                                                                                     | 1.9 | 7         |
| 6  | <i>δ</i> <sup>13</sup> C methane source signatures from tropical wetland and rice field emissions.<br>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380,<br>20200449.                                          | 1.6 | 8         |
| 7  | Is the destruction or removal of atmospheric methane a worthwhile option?. Philosophical<br>Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, 20210108.                                                                     | 1.6 | 10        |
| 8  | The urgent need to cut methane emissions. National Science Review, 2022, 9, nwab221.                                                                                                                                                                          | 4.6 | 2         |
| 9  | Airborne quantification of net methane and carbon dioxide fluxes from European Arctic wetlands in<br>Summer 2019. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences,<br>2022, 380, 20210192.                              | 1.6 | 2         |
| 10 | Rising methane: is there a methane emergency?. Philosophical Transactions Series A, Mathematical,<br>Physical, and Engineering Sciences, 2022, 380, 20210334.                                                                                                 | 1.6 | 6         |
| 11 | Large Methane Emission Fluxes Observed From Tropical Wetlands in Zambia. Global Biogeochemical<br>Cycles, 2022, 36, .                                                                                                                                         | 1.9 | 14        |
| 12 | Quantification of methane emissions from UK biogas plants. Waste Management, 2021, 124, 82-93.                                                                                                                                                                | 3.7 | 51        |
| 13 | lsotopic signatures of major methane sources in the coal seam gas fields and adjacent agricultural districts, Queensland, Australia. Atmospheric Chemistry and Physics, 2021, 21, 10527-10555.                                                                | 1.9 | 14        |
| 14 | Carbon isotopic characterisation and oxidation of UK landfill methane emissions by atmospheric measurements. Waste Management, 2021, 132, 162-175.                                                                                                            | 3.7 | 11        |
| 15 | Identification of Potential Methane Source Regions in Europe Using $\hat{I}$ 13 C CH4 Measurements and Trajectory Modeling. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033963.                                                         | 1.2 | 5         |
| 16 | What do we know about the global methane budget? Results from four decades of atmospheric<br>CH <sub>4</sub> observations and the way forward. Philosophical Transactions Series A,<br>Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200440. | 1.6 | 23        |
| 17 | Rising methane: is warming feeding warming?. Philosophical Transactions Series A, Mathematical,<br>Physical, and Engineering Sciences, 2021, 379, 20200459.                                                                                                   | 1.6 | 0         |
| 18 | Atmospheric methane and nitrous oxide: challenges alongthe path to Net Zero. Philosophical<br>Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200457.                                                                   | 1.6 | 16        |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Anthropogenic methane plume detection from point sources in the Paris megacity area and characterization of their 1/13C signature. Atmospheric Environment, 2020, 222, 117055.                                                  | 1.9 | 17        |
| 20 | Environmental baseline monitoring for shale gas development in the UK: Identification and geochemical characterisation of local source emissions of methane to atmosphere. Science of the Total Environment, 2020, 708, 134600. | 3.9 | 32        |
| 21 | Methane Mitigation: Methods to Reduce Emissions, on the Path to the Paris Agreement. Reviews of<br>Geophysics, 2020, 58, e2019RG000675.                                                                                         | 9.0 | 163       |
| 22 | Airborne measurements of fire emission factors for African biomass burning sampled during the MOYA campaign. Atmospheric Chemistry and Physics, 2020, 20, 15443-15459.                                                          | 1.9 | 17        |
| 23 | Methane emissions from oil and gas platforms in the North Sea. Atmospheric Chemistry and Physics, 2019, 19, 9787-9796.                                                                                                          | 1.9 | 42        |
| 24 | Very Strong Atmospheric Methane Growth in the 4ÂYears 2014–2017: Implications for the Paris<br>Agreement. Global Biogeochemical Cycles, 2019, 33, 318-342.                                                                      | 1.9 | 353       |
| 25 | Advancing Scientific Understanding of the Global Methane Budget in Support of the Paris Agreement.<br>Global Biogeochemical Cycles, 2019, 33, 1475-1512.                                                                        | 1.9 | 73        |
| 26 | Diurnal, seasonal, and annual trends in tropospheric CO in Southwest London during 2000–2015:<br>Wind sector analysis and comparisons with urban and remote sites. Atmospheric Environment, 2018,<br>177, 262-274.              | 1.9 | 3         |
| 27 | Variability in Atmospheric Methane From Fossil Fuel and Microbial Sources Over the Last Three Decades. Geophysical Research Letters, 2018, 45, 11,499.                                                                          | 1.5 | 46        |
| 28 | Flow rate and source reservoir identification from airborne chemical sampling of the uncontrolled Elgin platform gas release. Atmospheric Measurement Techniques, 2018, 11, 1725-1739.                                          | 1.2 | 11        |
| 29 | Interlaboratory comparison of<br><i>Î </i> <sup>13</sup> C and<br><i>Î </i> D measurements of atmospheric<br>CH <sub>4</sub> for combined use of data sets from different                                                       | 1.2 | 31        |
| 30 | Measurement of the <sup>13</sup> C isotopic signature of methane emissions from northern European wetlands. Global Biogeochemical Cycles, 2017, 31, 605-623.                                                                    | 1.9 | 52        |
| 31 | Evaluating methane inventories by isotopic analysis in the London region. Scientific Reports, 2017, 7, 4854.                                                                                                                    | 1.6 | 44        |
| 32 | A cautionary tale: A study of a methane enhancement over the North Sea. Journal of Geophysical<br>Research D: Atmospheres, 2017, 122, 7630-7645.                                                                                | 1.2 | 22        |
| 33 | Isotopic Ratios of Tropical Methane Emissions by Atmospheric Measurement. Global Biogeochemical<br>Cycles, 2017, 31, 1408-1419.                                                                                                 | 1.9 | 35        |
| 34 | Estimating the size of a methane emission point source at different scales: from local to landscape.<br>Atmospheric Chemistry and Physics, 2017, 17, 7839-7851.                                                                 | 1.9 | 27        |
| 35 | Atmospheric Sampling on Ascension Island Using Multirotor UAVs. Sensors, 2017, 17, 1189.                                                                                                                                        | 2.1 | 29        |
| 36 | Are the Fenno-Scandinavian Arctic Wetlands a Significant Regional Source of Formic Acid?.<br>Atmosphere, 2017, 8, 112.                                                                                                          | 1.0 | 4         |

| #  | Article                                                                                                                                                                                                                                                                                                             | IF        | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| 37 | Real-time analysis of &lt;i&gt;l <sup>^</sup> &lt;/i&gt;&lt;sup&gt;13&lt;/sup&gt;C- and<br>&lt;i&gt;l <sup>^</sup> &lt;/i&gt;D-CH&lt;sub&gt;4&lt;/sub&gt; in ambient air with<br>laser spectroscopy: method development and first intercomparison results. Atmospheric<br>Measurement Techniques. 2016, 9, 263-280. | 1.2       | 43        |
| 38 | Extensive release of methane from Arctic seabed west of Svalbard during summer 2014 does not influence the atmosphere. Geophysical Research Letters, 2016, 43, 4624-4631.                                                                                                                                           | 1.5       | 74        |
| 39 | Methane mole fraction and l´ <sup>13</sup> C above and below the trade wind inversion at Ascension<br>Island in air sampled by aerial robotics. Geophysical Research Letters, 2016, 43, 11,893.                                                                                                                     | 1.5       | 14        |
| 40 | Marked long-term decline in ambient CO mixing ratio in SE England, 1997–2014: evidence of policy success in improving air quality. Scientific Reports, 2016, 6, 25661.                                                                                                                                              | 1.6       | 11        |
| 41 | Measurements of δ <sup>13</sup> C in CH <sub>4</sub> and using particle dispersion modeling to characterize sources of Arctic methane within an air mass. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14257-14270.                                                                                   | 1.2       | 22        |
| 42 | Rising atmospheric methane: 2007–2014 growth and isotopic shift. Global Biogeochemical Cycles, 2016,<br>30, 1356-1370.                                                                                                                                                                                              | 1.9       | 317       |
| 43 | In situ observations of the isotopic composition of methane at the Cabauw tall tower site.<br>Atmospheric Chemistry and Physics, 2016, 16, 10469-10487.                                                                                                                                                             | 1.9       | 77        |
| 44 | Carbon isotopic signature of coal-derived methane emissions to the atmosphere: from coalification to alteration. Atmospheric Chemistry and Physics, 2016, 16, 13669-13680.                                                                                                                                          | 1.9       | 45        |
| 45 | Using<br><i>l´</i> <sup>13</sup> C-CH <sub>4&amp;<br/>and <i>l´</i>D-CH<sub>4</sub> to constrain<br/>Arctic methane emissions. Atmospheric Chemistry and Physics. 2016. 16. 14891-14908.</sub>                                                                                                                      | amp;lt;/s | ub&g      |
| 46 | Atmospheric constraints on the methane emissions from the East Siberian Shelf. Atmospheric Chemistry and Physics, 2016, 16, 4147-4157.                                                                                                                                                                              | 1.9       | 69        |
| 47 | Automatic Path Generation for Multirotor Descents Through Varying Air Masses above Ascension<br>Island. , 2016, , .                                                                                                                                                                                                 |           | 4         |
| 48 | Assessing Connectivity Between an Overlying Aquifer and a Coal Seam Gas Resource Using Methane<br>Isotopes, Dissolved Organic Carbon and Tritium. Scientific Reports, 2015, 5, 15996.                                                                                                                               | 1.6       | 26        |
| 49 | Methane emissions in East Asia for 2000–2011 estimated using an atmospheric Bayesian inversion.<br>Journal of Geophysical Research D: Atmospheres, 2015, 120, 4352-4369.                                                                                                                                            | 1.2       | 82        |
| 50 | Diurnal, seasonal, and annual trends in atmospheric CO2 at southwest London during 2000–2012:<br>Wind sector analysis and comparison with Mace Head, Ireland. Atmospheric Environment, 2015, 105,<br>138-147.                                                                                                       | 1.9       | 31        |
| 51 | Plume mapping and isotopic characterisation of anthropogenic methane sources. Atmospheric Environment, 2015, 110, 151-162.                                                                                                                                                                                          | 1.9       | 62        |
| 52 | Methane and carbon dioxide fluxes and their regional scalability for the European Arctic wetlands<br>during the MAMM project in summer 2012. Atmospheric Chemistry and Physics, 2014, 14, 13159-13174.                                                                                                              | 1.9       | 39        |
| 53 | Methane on the Rise—Again. Science, 2014, 343, 493-495.                                                                                                                                                                                                                                                             | 6.0       | 457       |
| 54 | Could methane produced by sauropod dinosaurs have helped drive Mesozoic climate warmth?.<br>Current Biology, 2012, 22, R292-R293.                                                                                                                                                                                   | 1.8       | 21        |

| #  | Article                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Arctic methane sources: Isotopic evidence for atmospheric inputs. Geophysical Research Letters, 2011, 38, n/a-n/a.                                                                    | 1.5  | 119       |
| 56 | Greenhouse gases in the Earth system: setting the agenda to 2030. Philosophical Transactions Series A,<br>Mathematical, Physical, and Engineering Sciences, 2011, 369, 1885-1890.     | 1.6  | 12        |
| 57 | Global atmospheric methane: budget, changes and dangers. Philosophical Transactions Series A,<br>Mathematical, Physical, and Engineering Sciences, 2011, 369, 2058-2072.              | 1.6  | 510       |
| 58 | The evolution of the atmosphere in the Archaean and early Proterozoic. Science Bulletin, 2011, 56, 4-13.                                                                              | 1.7  | 22        |
| 59 | Top-Down Versus Bottom-Up. Science, 2010, 328, 1241-1243.                                                                                                                             | 6.0  | 164       |
| 60 | Inverse modeling of European CH <sub>4</sub> emissions 2001–2006. Journal of Geophysical Research,<br>2010, 115, .                                                                    | 3.3  | 120       |
| 61 | The Eons of Chaos and Hades. Solid Earth, 2010, 1, 1-3.                                                                                                                               | 1.2  | 19        |
| 62 | Emission of methane from plants. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1347-1354.                                                                       | 1.2  | 149       |
| 63 | Shifting Gear, Quickly. Science, 2009, 324, 477-478.                                                                                                                                  | 6.0  | 31        |
| 64 | Kick-starting ancient warming. Nature Geoscience, 2009, 2, 156-159.                                                                                                                   | 5.4  | 26        |
| 65 | Escape of methane gas from the seabed along the West Spitsbergen continental margin. Geophysical<br>Research Letters, 2009, 36, .                                                     | 1.5  | 406       |
| 66 | First continuous measurements of CO2 mixing ratio in central London using a compact diffusion probe. Atmospheric Environment, 2008, 42, 8943-8953.                                    | 1.9  | 43        |
| 67 | Methane, oxygen, photosynthesis, rubisco and the regulation of the air through time. Philosophical<br>Transactions of the Royal Society B: Biological Sciences, 2008, 363, 2745-2754. | 1.8  | 30        |
| 68 | Cinderella science. Nature, 2007, 450, 789-790.                                                                                                                                       | 13.7 | 47        |
| 69 | The age of Rubisco: the evolution of oxygenic photosynthesis. Geobiology, 2007, 5, 311-335.                                                                                           | 1.1  | 111       |
| 70 | Creating Habitable Zones, at all Scales, from Planets to Mud Micro-Habitats, on Earth and on Mars.<br>Space Science Reviews, 2007, 129, 79-121.                                       | 3.7  | 34        |
| 71 | Emergence of a Habitable Planet. Space Science Reviews, 2007, 129, 35-78.                                                                                                             | 3.7  | 334       |
| 72 | Early life signatures in sulfur and carbon isotopes from Isua, Barberton, Wabigoon (Steep Rock), and<br>Belingwe Greenstone Belts (3.8 to 2.7 Ga). , 2006, , .                        |      | 19        |

| #  | Article                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | High-precision, automated stable isotope analysis of atmospheric methane and carbon dioxide using continuous-flow isotope-ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 2006, 20, 200-208.                                                 | 0.7  | 102       |
| 74 | Buds from the tree of life: linking compartmentalized prokaryotes and eukaryotes by a non-hyperthermophile common ancestor and implications for understanding Archaean microbial communities. International Journal of Astrobiology, 2004, 3, 183-187.           | 0.9  | 7         |
| 75 | Impact of a hydrogen economy on the stratosphere and troposphere studied in a 2-D model.<br>Geophysical Research Letters, 2004, 31, n/a-n/a.                                                                                                                     | 1.5  | 98        |
| 76 | Have sudden large releases of methane from geological reservoirs occurred since the Last Glacial<br>Maximum, and could such releases occur again?. Philosophical Transactions Series A, Mathematical,<br>Physical, and Engineering Sciences, 2002, 360, 581-607. | 1.6  | 53        |
| 77 | The impact of meteorology on the interannual growth rate of atmospheric methane. Geophysical<br>Research Letters, 2002, 29, 8-1-8-4.                                                                                                                             | 1.5  | 48        |
| 78 | London methane emissions: Use of diurnal changes in concentration and δ13C to identify urban sources and verify inventories. Journal of Geophysical Research, 2001, 106, 7427-7448.                                                                              | 3.3  | 90        |
| 79 | The habitat and nature of early life. Nature, 2001, 409, 1083-1091.                                                                                                                                                                                              | 13.7 | 787       |
| 80 | Heavenly phenomena. Nature, 2001, 410, 635-635.                                                                                                                                                                                                                  | 13.7 | 0         |
| 81 | The realms of Archaean life. Nature, 2000, 405, 625-626.                                                                                                                                                                                                         | 13.7 | 48        |
| 82 | Archaean metabolic evolution of microbial mats. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 2375-2382.                                                                                                                                   | 1.2  | 83        |
| 83 | Giant submarine landslides. Nature, 1998, 392, 329-330.                                                                                                                                                                                                          | 13.7 | 142       |
| 84 | The Origin of Bl Zones in Komatiite Flows. Journal of Petrology, 1997, 38, 1565-1584.                                                                                                                                                                            | 1.1  | 8         |
| 85 | Nomenclature for life. Nature, 1996, 380, 291-291.                                                                                                                                                                                                               | 13.7 | 15        |
| 86 | Some liked it hot. Nature, 1996, 382, 404-405.                                                                                                                                                                                                                   | 13.7 | 50        |
| 87 | Local attitudes. Nature, 1996, 383, 40-40.                                                                                                                                                                                                                       | 13.7 | 0         |
| 88 | Origins of photosynthesis. Nature, 1995, 373, 479-480.                                                                                                                                                                                                           | 13.7 | 112       |
| 89 | Orogins of photosynthesis. Nature, 1995, 376, 26-27.                                                                                                                                                                                                             | 13.7 | 2         |
| 90 | Can diamonds be dead bacteria?. Nature, 1994, 367, 694-694.                                                                                                                                                                                                      | 13.7 | 32        |

| #  | Article                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91 | A dramatic decrease in the growth rate of atmospheric methane in the northern hemisphere during 1992. Geophysical Research Letters, 1994, 21, 45-48.                          | 1.5  | 203       |
| 92 | Concentration and13C records of atmospheric methane in New Zealand and Antarctica: Evidence for changes in methane sources. Journal of Geophysical Research, 1994, 99, 16913. | 3.3  | 126       |
| 93 | More than dinomania. Nature, 1993, 365, 587-587.                                                                                                                              | 13.7 | 1         |
| 94 | Sources of atmospheric CH <sub>4</sub> in early postglacial time. Journal of Geophysical Research, 1992, 97, 12859-12867.                                                     | 3.3  | 48        |
| 95 | The end of the ice age. Canadian Journal of Earth Sciences, 1990, 27, 148-157.                                                                                                | 0.6  | 150       |
| 96 | Some northern sources of atmospheric methane: production, history, and future implications.<br>Canadian Journal of Earth Sciences, 1989, 26, 1603-1611.                       | 0.6  | 58        |
| 97 | Archaean stromatolites from the Steep Rock Group, northwestern Ontario, Canada. Canadian Journal<br>of Earth Sciences, 1985, 22, 792-799.                                     | 0.6  | 40        |
| 98 | Petrography and stable isotope ratios from Archaean stromatolites, Mushandike Formation,<br>Zimbabwe. Precambrian Research, 1985, 27, 385-398.                                | 1.2  | 18        |