
Mo K Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1618936/publications.pdf Version: 2024-02-01

MOKKANC

#	Article	IF	CITATIONS
1	Indigenous microbiota protects development of medication-related osteonecrosis induced by periapical disease in mice. International Journal of Oral Science, 2022, 14, 16.	8.6	10
2	DYRK1A is required for maintenance of cancer stemness, contributing to tumorigenic potential in oral/oropharyngeal squamous cell carcinoma. Experimental Cell Research, 2021, 405, 112656.	2.6	14
3	Zoledronic acid impairs oral cancer stem cells by reducing CCL3. Oncology Reports, 2021, 45, 291-298.	2.6	1
4	Proinflammatory cytokine TNFα promotes HPV-associated oral carcinogenesis by increasing cancer stemness. International Journal of Oral Science, 2020, 12, 3.	8.6	14
5	Genetic and Epigenetic Characterization of Pulpal and Periapical Inflammation. Frontiers in Physiology, 2020, 11, 21.	2.8	25
6	Rosuvastatin Prevents the Exacerbation of Atherosclerosis in Ligature-Induced Periodontal Disease Mouse Model. Scientific Reports, 2020, 10, 6383.	3.3	20
7	Zoledronic acid impairs oral cancer stem cells by reducing CCL3. Oncology Reports, 2020, 45, 291-298.	2.6	3
8	Insights into the July 2019 Issue of the Journal of Endodontics. Journal of Endodontics, 2019, 45, 829-830.	3.1	0
9	Histone Lys demethylase KDM3C demonstrates antiâ€inflammatory effects by suppressing NFâ€î°B signaling and osteoclastogenesis. FASEB Journal, 2019, 33, 10515-10527.	0.5	18
10	NFATc3 plays an oncogenic role in oral/oropharyngeal squamous cell carcinomas by promoting cancer stemness via expression of OCT4. Oncotarget, 2019, 10, 2306-2319.	1.8	16
11	Evaluation of the Biodistribution of Human Dental Pulp Stem Cells Transplanted into Mice. Journal of Endodontics, 2018, 44, 592-598.	3.1	5
12	hTERT peptide fragment GV1001 demonstrates radioprotective and antifibrotic effects through suppression of TGFâ€Î² signaling. International Journal of Molecular Medicine, 2018, 41, 3211-3220.	4.0	8
13	Minced Pulp as Source of Pulpal Mesenchymal Stem Cells with Odontogenic Differentiation Capacity. Journal of Endodontics, 2018, 44, 80-86.	3.1	8
14	Removal of Pre-Existing Periodontal Inflammatory Condition before Tooth Extraction Ameliorates Medication-Related Osteonecrosis of the Jaw–Like Lesion in Mice. American Journal of Pathology, 2018, 188, 2318-2327.	3.8	44
15	Grainyhead-like 2 (GRHL2) knockout abolishes oral cancer development through reciprocal regulation of the MAP kinase and TGF-1 ² signaling pathways. Oncogenesis, 2018, 7, 38.	4.9	21
16	Regulation of Epithelial Cell Proliferation, Differentiation, and Plasticity by Grainyhead-Like 2 During Oral Carcinogenesis. Critical Reviews in Oncogenesis, 2018, 23, 201-217.	0.4	9
17	Endodontics at the Verge of New Era Driven by Biological Innovation. Dental Clinics of North America, 2017, 61, xi-xii.	1.8	0
18	Molecular Mechanisms of Apical Periodontitis. Dental Clinics of North America, 2017, 61, 17-35.	1.8	18

Mo K Kang

#	Article	IF	CITATIONS
19	Three-dimensional Sphere-forming Cells Are Unique Multipotent Cell Population in Dental Pulp Cells. Journal of Endodontics, 2017, 43, 1302-1308.	3.1	18
20	Revascularization-associated Intracanal Calcification: Assessment of Prevalence and Contributing Factors. Journal of Endodontics, 2017, 43, 2025-2033.	3.1	77
21	Clinical validation of a nanodiamond-embedded thermoplastic biomaterial. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9445-E9454.	7.1	55
22	Bisphosphonate inhibits the expression of cyclin A2 at the transcriptional level in normal human oral keratinocytes. International Journal of Molecular Medicine, 2017, 40, 623-630.	4.0	9
23	Development of a Direct Pulp-capping Model for the Evaluation of Pulpal Wound Healing and Reparative Dentin Formation in Mice. Journal of Visualized Experiments, 2017, , .	0.3	9
24	IL-36 Induces Bisphosphonate-Related Osteonecrosis of the Jaw-Like Lesions in Mice by Inhibiting TGF-β-Mediated Collagen Expression. Journal of Bone and Mineral Research, 2017, 32, 309-318.	2.8	35
25	Orai1 promotes tumor progression by enhancing cancer stemness <i>via</i> NFAT signaling in oral/oropharyngeal squamous cell carcinoma. Oncotarget, 2016, 7, 43239-43255.	1.8	47
26	Grainyhead-like 2 regulates epithelial plasticity and stemness in oral cancer cells. Carcinogenesis, 2016, 37, 500-510.	2.8	45
27	Orai1 mediates osteogenic differentiation via BMP signaling pathway in bone marrow mesenchymal stem cells. Biochemical and Biophysical Research Communications, 2016, 473, 1309-1314.	2.1	28
28	Preexisting Periapical Inflammatory Condition Exacerbates Tooth Extraction–induced Bisphosphonate-related Osteonecrosis ofÂtheÂJawÂLesions in Mice. Journal of Endodontics, 2016, 42, 1641-1646.	3.1	44
29	Elevated expression of JMJD6 is associated with oral carcinogenesis and maintains cancer stemness properties. Carcinogenesis, 2016, 37, 119-128.	2.8	51
30	Regulation of p53 during senescence in normal human keratinocytes. Aging Cell, 2015, 14, 838-846.	6.7	40
31	The Anti-Inflammatory Effect of Human Telomerase-Derived Peptide on <i>P. gingivalis</i> Lipopolysaccharide-Induced Inflammatory Cytokine Production and Its Mechanism in Human Dental Pulp Cells. Mediators of Inflammation, 2015, 2015, 1-8.	3.0	35
32	The p63 Gene Is Regulated by Grainyhead-like 2 (GRHL2) through Reciprocal Feedback and Determines the Epithelial Phenotype in Human Keratinocytes. Journal of Biological Chemistry, 2015, 290, 19999-20008.	3.4	35
33	Human papillomavirus 16 (HPV16) enhances tumor growth and cancer stemness of HPV-negative oral/oropharyngeal squamous cell carcinoma cells via miR-181 regulation. Papillomavirus Research (Amsterdam, Netherlands), 2015, 1, 116-125.	4.5	41
34	Oral Mucosal Keratinocyte Stem Cells. , 2015, , 307-321.		0
35	Impaired Bone Resorption and Woven Bone Formation Are Associated with Development of Osteonecrosis of the Jaw-Like Lesions by Bisphosphonate and Anti–Receptor Activator of NF-κB Ligand Antibody in Mice. American Journal of Pathology, 2014, 184, 3084-3093.	3.8	74
36	Osteo-/Odontogenic Differentiation of Induced Mesenchymal Stem Cells Generated through Epithelial–Mesenchyme Transition of Cultured Human Keratinocytes. Journal of Endodontics, 2014, 40, 1796-1801.	3.1	8

Mo K Kang

#	Article	IF	CITATIONS
37	Effect of 1440-Nanometer Neodymium:Yttrium-Aluminum-Garnet Laser Irradiation on Pain and Neuropeptide Reduction: A Randomized Prospective Clinical Trial. Journal of Endodontics, 2014, 40, 28-32.	3.1	27
38	Development of oral osteomucosal tissue constructs in vitro and localization of fluorescently-labeled bisphosphonates to hard and soft tissue. International Journal of Molecular Medicine, 2014, 34, 559-563.	4.0	21
39	Therapeutic Potential of Mesenchymal Stem Cells for Oral and Systemic Diseases. Dental Clinics of North America, 2012, 56, 651-675.	1.8	24
40	Impaired Odontogenic Differentiation of Senescent Dental Mesenchymal Stem Cells Is Associated with Loss of Bmi-1 Expression. Journal of Endodontics, 2011, 37, 662-666.	3.1	50
41	ΔNp63α Protein Triggers Epithelial-Mesenchymal Transition and Confers Stem Cell Properties in Normal Human Keratinocytes. Journal of Biological Chemistry, 2011, 286, 38757-38767.	3.4	55
42	Bmi-1 extends the life span of normal human oral keratinocytes by inhibiting the TGF-β signaling. Experimental Cell Research, 2010, 316, 2600-2608.	2.6	28
43	Grainyhead-like 2 Enhances the Human Telomerase Reverse Transcriptase Gene Expression by Inhibiting DNA Methylation at the 5′-CpG Island in Normal Human Keratinocytes*. Journal of Biological Chemistry, 2010, 285, 40852-40863.	3.4	46
44	Polycomb group proteins. Cell Cycle, 2010, 9, 2704-2712.	2.6	7
45	Association of hsp90 to the hTERT promoter is necessary for hTERT expression in human oral cancer cells. Carcinogenesis, 2008, 29, 2425-2431.	2.8	39
46	Bmi-1 cooperates with human papillomavirus type 16 E6 to immortalize normal human oral keratinocytes. Experimental Cell Research, 2007, 313, 462-472.	2.6	40
47	Extension of Cell Life Span Using Exogenous Telomerase. Methods in Molecular Biology, 2007, 371, 151-165.	0.9	23
48	Normal human oral keratinocytes demonstrate abnormal DNA end joining activity during replicative senescence. Mechanisms of Ageing and Development, 2005, 126, 475-479.	4.6	10
49	Senescence-associated decline in the intranuclear accumulation of hOGG1-α and impaired 8-oxo-dG repair activity in senescing normal human oral keratinocytes in vivo. Experimental Cell Research, 2005, 310, 186-195.	2.6	11
50	Senescence occurs withhTERT repression and limited telomere shortening in human oral keratinocytes cultured with feeder cells. Journal of Cellular Physiology, 2004, 199, 364-370.	4.1	37
51	Telomere shortening does not occur during postmaturational aging in situ in normal human oral fibroblasts. Mechanisms of Ageing and Development, 2003, 124, 873-876.	4.6	6
52	Senescence-associated genes in normal human oral keratinocytes. Experimental Cell Research, 2003, 287, 272-281.	2.6	82
53	The telomeric length and heterogeneity decrease with age in normal human oral keratinocytes. Mechanisms of Ageing and Development, 2002, 123, 585-592.	4.6	22
54	In Vitro Replication and Differentiation of Normal Human Oral Keratinocytes. Experimental Cell Research, 2000, 258, 288-297.	2.6	61