## Roswitha Zeis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1618862/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Microstructure reconstruction using fiber tracking technique and pore-scale simulations of heterogeneous gas diffusion layer. International Journal of Hydrogen Energy, 2022, 47, 20218-20231.                                     | 3.8 | 7         |
| 2  | Experimental validation of pore-scale models for gas diffusion layers. Journal of Power Sources, 2022, 536, 231515.                                                                                                                | 4.0 | 10        |
| 3  | High-density and low-density gas diffusion layers for proton exchange membrane fuel cells:<br>Comparison of mechanical and transport properties. International Journal of Hydrogen Energy, 2022,<br>47, 22532-22544.               | 3.8 | 5         |
| 4  | Investigating Electrode Reactions in Vanadium Redox Flow Batteries - a Distribution of Relaxation<br>Times Analysis. ECS Meeting Abstracts, 2022, MA2022-01, 2012-2012.                                                            | 0.0 | 0         |
| 5  | Impact of catalyst layer morphology on the operation of high temperature PEM fuel cells. Journal of<br>Power Sources Advances, 2021, 7, 100042.                                                                                    | 2.6 | 29        |
| 6  | NMR analysis of phosphoric acid distribution in porous fuel cell catalysts. Chemical Communications, 2021, 57, 2547-2550.                                                                                                          | 2.2 | 4         |
| 7  | Synchrotron X-Ray radiography of vanadium redox flow batteries – Time and spatial resolved electrolyte flow in porous carbon electrodes. Journal of Power Sources, 2021, 492, 229660.                                              | 4.0 | 19        |
| 8  | Multiphase and Pore Scale Modeling on Catalyst Layer of High-Temperature Polymer Electrolyte<br>Membrane Fuel Cell. Journal of the Electrochemical Society, 2021, 168, 054521.                                                     | 1.3 | 8         |
| 9  | Microstructure reconstruction of the gas diffusion layer and analyses of the anisotropic transport properties. Energy Conversion and Management, 2021, 241, 114293.                                                                | 4.4 | 45        |
| 10 | Nitrogen-functionalized carbon-supported Pt catalysts implemented in high-temperature polymer electrolyte membrane fuel cell. Journal of Power Sources, 2021, 507, 229971.                                                         | 4.0 | 13        |
| 11 | Degradation Characteristics of Electrospun Gas Diffusion Layers with Custom Pore Structures for<br>Polymer Electrolyte Membrane Fuel Cells. ACS Applied Materials & Interfaces, 2021, 13, 2414-2427.                               | 4.0 | 8         |
| 12 | Localizing Phosphoric Acid in High-Temperature PEM Fuel Cell Catalyst Layers Using Cryostatic<br>Focused Ion Beam Scanning Electron Microscopy. ECS Meeting Abstracts, 2021, MA2021-02, 1058-1058.                                 | 0.0 | 0         |
| 13 | (Invited) Diagnostic Tools to Evaluate Materials for High-Performance PBI Systems. ECS Meeting<br>Abstracts, 2021, MA2021-02, 1099-1099.                                                                                           | 0.0 | 0         |
| 14 | Side reactions and stability of pre-treated carbon felt electrodes for vanadium redox flow batteries:<br>A DEMS study. Carbon, 2020, 158, 580-587.                                                                                 | 5.4 | 45        |
| 15 | The impact of the catalyst layer structure on phosphoric acid migration in HT-PEFC – An operando<br>X-ray tomographic microscopy study. Journal of Electroanalytical Chemistry, 2020, 859, 113832.                                 | 1.9 | 22        |
| 16 | Deconvolution of electrochemical impedance data for the monitoring of electrode degradation in<br>VRFB. Electrochimica Acta, 2020, 336, 135510.                                                                                    | 2.6 | 23        |
| 17 | Mesoscopic modeling and characterization of the porous electrodes for vanadium redox flow batteries. Journal of Energy Storage, 2020, 32, 101782.                                                                                  | 3.9 | 15        |
| 18 | Understanding the role of the anode on the polarization losses in high-temperature polymer<br>electrolyte membrane fuel cells using the distribution of relaxation times analysis. Journal of Power<br>Sources, 2020, 471, 228469. | 4.0 | 35        |

**ROSWITHA ZEIS** 

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Designing Tailored Gas Diffusion Layers with Pore Size Gradients via Electrospinning for Polymer<br>Electrolyte Membrane Fuel Cells. ACS Applied Energy Materials, 2020, 3, 2695-2707.                                              | 2.5 | 31        |
| 20 | Porous electrospun carbon nanofibers network as an integrated electrode@gas diffusion layer for high temperature polymer electrolyte membrane fuel cells. Electrochimica Acta, 2020, 345, 136192.                                   | 2.6 | 27        |
| 21 | Synchrotron Xâ€ray Radiography and Tomography of Vanadium Redox Flow Batteries—Cell Design,<br>Electrolyte Flow Geometry, and Gas Bubble Formation. ChemSusChem, 2020, 13, 3154-3165.                                               | 3.6 | 24        |
| 22 | Pore-Scale Characterization and Simulation of Porous Electrode Material for Vanadium Redox Flow<br>Battery: Effects of Compression on Transport Properties. Journal of the Electrochemical Society,<br>2020, 167, 110545.           | 1.3 | 13        |
| 23 | The Impact of Electrode Aging on the Structural and Mechanical Properties of Carbon Felt Electrodes for Vanadium Redox Flow Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 1097-1097.                                           | 0.0 | 0         |
| 24 | Flow Geometry of the Electrolyte and Gas Bubble Formation in Redox Flow Batteries - a Synchrotron<br>Imaging Study. ECS Meeting Abstracts, 2020, MA2020-02, 1040-1040.                                                              | 0.0 | 0         |
| 25 | Carbon felt electrodes for redox flow battery: Impact of compression on transport properties.<br>Journal of Energy Storage, 2019, 26, 100997.                                                                                       | 3.9 | 62        |
| 26 | Visualization of electrolyte flow in vanadium redox flow batteries using synchrotron X-ray<br>radiography and tomography – Impact of electrolyte species and electrode compression. Journal of<br>Power Sources, 2019, 439, 227071. | 4.0 | 43        |
| 27 | Porous N- and S-doped carbon–carbon composite electrodes by soft-templating for redox flow batteries. Beilstein Journal of Nanotechnology, 2019, 10, 1131-1139.                                                                     | 1.5 | 12        |
| 28 | Solid Mechanics Simulation of Reconstructed Gas Diffusion Layers for PEMFCs. Journal of the Electrochemical Society, 2019, 166, F377-F385.                                                                                          | 1.3 | 24        |
| 29 | Comparison of Electrospun Carbonâ^'Carbon Composite and Commercial Felt for Their Activity and Electrolyte Utilization in Vanadium Redox Flow Batteries. ChemElectroChem, 2019, 6, 130-135.                                         | 1.7 | 27        |
| 30 | Comparison of Electrospun Carbonâ^'Carbon Composite and Commercial Felt for Their Activity and<br>Electrolyte Utilization in Vanadium Redox Flow Batteries. ChemElectroChem, 2019, 6, 6-6.                                          | 1.7 | 5         |
| 31 | Characterization of carbon felt electrodes for vanadium redox flow batteries – A pore network<br>modeling approach. Journal of Energy Storage, 2019, 21, 163-171.                                                                   | 3.9 | 50        |
| 32 | Electrolyte Flow in Vanadium Redox Flow Batteries. ECS Meeting Abstracts, 2019, , .                                                                                                                                                 | 0.0 | 0         |
| 33 | Characterizing Carbon Felt Electrodes for Vanadium Redox Flow Batteries Using Differential Electrochemical Mass Spectrometry. ECS Meeting Abstracts, 2019, , .                                                                      | 0.0 | 0         |
| 34 | Modifying Carbon Felt Electrodes By Poly(o-toluidine) to Enhance the Performance of All-Vanadium<br>Redox Flow Batteries. ECS Meeting Abstracts, 2019, , .                                                                          | 0.0 | 0         |
| 35 | Effects of compression on water distribution in gas diffusion layer materials of PEMFC in a point injection device by means of synchrotron X-ray imaging. International Journal of Hydrogen Energy, 2018, 43, 391-406.              | 3.8 | 72        |
| 36 | Microporous Layer Degradation in Polymer Electrolyte Membrane Fuel Cells. Journal of the Electrochemical Society, 2018, 165, F3271-F3280.                                                                                           | 1.3 | 30        |

**ROSWITHA ZEIS** 

| #  | Article                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Differential Electrochemical Mass Spectrometry of Carbon Felt Electrodes for Vanadium Redox Flow<br>Batteries. ACS Applied Energy Materials, 2018, 1, 6714-6718.                                                                                                      | 2.5 | 18        |
| 38 | Comparing Novel PGM-Free, Platinum, and Alloyed Platinum Catalysts for HT-PEMFCs. ECS Transactions, 2018, 86, 221-229.                                                                                                                                                | 0.3 | 11        |
| 39 | Characterization of Carbon Felt Electrodes for Vanadium Redox Flow Batteries: Impact of Treatment<br>Methods. Journal of the Electrochemical Society, 2018, 165, A2577-A2586.                                                                                         | 1.3 | 82        |
| 40 | Distribution of Relaxation Times Analysis of High-Temperature PEM Fuel Cell Impedance Spectra.<br>Electrochimica Acta, 2017, 230, 391-398.                                                                                                                            | 2.6 | 146       |
| 41 | Interplay between structure and properties in acid-base blend PBI-based membranes for HT-PEM fuel cells. Journal of Membrane Science, 2017, 535, 122-131.                                                                                                             | 4.1 | 54        |
| 42 | Accelerated Degradation of Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers. Journal of the Electrochemical Society, 2017, 164, F695-F703.                                                                                                                 | 1.3 | 30        |
| 43 | Accelerated Degradation of Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers. Journal of the Electrochemical Society, 2017, 164, F704-F713.                                                                                                                 | 1.3 | 42        |
| 44 | Accelerated Degradation of Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers. Journal of the Electrochemical Society, 2017, 164, F714-F721.                                                                                                                 | 1.3 | 30        |
| 45 | Phosphoric Acid Invasion in High Temperature PEM Fuel Cell Gas Diffusion Layers. Electrochimica Acta, 2017, 257, 89-98.                                                                                                                                               | 2.6 | 56        |
| 46 | The Impacts of Microporous Layer Degradation on Liquid Water Distributions in Polymer Electrolyte<br>Membrane Fuel Cells Using Synchrotron Imaging. ECS Transactions, 2017, 80, 155-164.                                                                              | 0.3 | 5         |
| 47 | Phosphoric Acid Distribution Patterns in High Temperature PEM Fuel Cells. ECS Transactions, 2017, 80, 409-417.                                                                                                                                                        | 0.3 | 13        |
| 48 | Influence of the polytetrafluoroethylene content on the performance of high-temperature polymer<br>electrolyte membrane fuel cell electrodes. International Journal of Hydrogen Energy, 2016, 41,<br>7475-7483.                                                       | 3.8 | 43        |
| 49 | Accelerated Degradation of Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers:<br>Performance Degradation and Steady State Liquid Water Distributions with in Operando Synchrotron<br>X-ray Radiography. ECS Transactions, 2016, 75, 289-300.                | 0.3 | 3         |
| 50 | Accelerated Degradation of Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers: Mass<br>Transport Resistance and Liquid Water Accumulation at Limiting Current Density with in operando<br>Synchrotron X-ray Radiography. ECS Transactions, 2016, 75, 89-100. | 0.3 | 3         |
| 51 | Role of the microporous layer in the redistribution of phosphoric acid in high temperature PEM fuel cell gas diffusion electrodes. Electrochimica Acta, 2016, 212, 187-194.                                                                                           | 2.6 | 40        |
| 52 | Evaluation of Electrolyte Additives for Highâ€Temperature Polymer Electrolyte Fuel Cells.<br>ChemElectroChem, 2016, 3, 770-773.                                                                                                                                       | 1.7 | 15        |
| 53 | Electrochemical Impedance Spectroscopy as a Diagnostic Tool for High-Temperature PEM Fuel Cells.<br>ECS Transactions, 2015, 69, 1075-1087.                                                                                                                            | 0.3 | 10        |
| 54 | Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells. Beilstein Journal of Nanotechnology, 2015, 6, 68-83.                                                                                                          | 1.5 | 159       |

**ROSWITHA ZEIS** 

| #  | Article                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Perfluoroalkyl-Phosphonic Acid Adsorption on Polycrystalline Platinum and Its Influence on the<br>Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2015, 119, 18859-18869.   | 1.5 | 13        |
| 56 | Novel phosphoric acid-doped PBI-blends as membranes for high-temperature PEM fuel cells. Journal of<br>Materials Chemistry A, 2015, 3, 10864-10874.                                     | 5.2 | 89        |
| 57 | Phosphoric acid distribution and its impact on the performance of polybenzimidazole membranes.<br>Journal of Power Sources, 2014, 270, 627-633.                                         | 4.0 | 44        |
| 58 | Fluoroalkyl phosphoric acid derivatives — Model compounds to study the adsorption of electrolyte species on polycrystalline platinum. Electrochemistry Communications, 2014, 48, 24-27. | 2.3 | 10        |
| 59 | Morphology studies on high-temperature polymer electrolyte membrane fuel cell electrodes. Journal of Power Sources, 2014, 255, 431-438.                                                 | 4.0 | 53        |
| 60 | PTFE Distribution in High-Temperature PEM Electrodes and Its Effect on the Cell Performance. ECS Transactions, 2013, 58, 881-888.                                                       | 0.3 | 20        |
| 61 | Enhanced Pt stability in MO2 (M=Ce, Zr or Ce0.9Zr0.1)-promoted Pt/C electrocatalysts for oxygen reduction reaction in PAFCs. Applied Catalysis A: General, 2010, 381, 54-65.            | 2.2 | 34        |
| 62 | Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold. Journal of Catalysis, 2008, 253, 132-138.                                                                       | 3.1 | 225       |
| 63 | Platinum-plated nanoporous gold: An efficient, low Pt loading electrocatalyst for PEM fuel cells.<br>Journal of Power Sources, 2007, 165, 65-72.                                        | 4.0 | 196       |
| 64 | Organization of Acenes with a Cruciform Assembly Motif. Journal of the American Chemical Society, 2006, 128, 1340-1345.                                                                 | 6.6 | 214       |
| 65 | Field Effect Studies on Rubrene and Impurities of Rubrene. Chemistry of Materials, 2006, 18, 244-248.                                                                                   | 3.2 | 173       |
| 66 | Single-Crystal Field-Effect Transistors Based on Organic Selenium-Containing Semiconductor.<br>Japanese Journal of Applied Physics, 2005, 44, 3712-3714.                                | 0.8 | 20        |
| 67 | Pentacene Disproportionation during Sublimation for Field-Effect Transistors. Journal of the American Chemical Society, 2005, 127, 3069-3075.                                           | 6.6 | 191       |
| 68 | Synthesis, Crystal Structure, and Transistor Performance of Tetracene Derivatives. Journal of the American Chemical Society, 2004, 126, 15322-15323.                                    | 6.6 | 353       |
| 69 | High-mobility field-effect transistors based on transition metal dichalcogenides. Applied Physics Letters, 2004, 84, 3301-3303.                                                         | 1.5 | 497       |