Maggie Kalev-Zylinska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1618740/publications.pdf

Version: 2024-02-01

623574 477173 28 906 14 29 citations h-index g-index papers 29 29 29 1241 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis. Development (Cambridge), 2002, 129, 2015-2030.	1.2	257
2	Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis. Development (Cambridge), 2002, 129, 2015-30.	1.2	109
3	Duplicate zebrafish runx2 orthologues are expressed in developing skeletal elements. Gene Expression Patterns, 2004, 4, 573-581.	0.3	96
4	Zebrafish runx1 promoter-EGFP transgenics mark discrete sites of definitive blood progenitors. Blood, 2009, 113, 1241-1249.	0.6	59
5	Runx3 is required for hematopoietic development in zebrafish. Developmental Dynamics, 2003, 228, 323-336.	0.8	53
6	Functional MRI in NPSLE patients reveals increased parietal and frontal brain activation during a working memory task compared with controls. Rheumatology, 2008, 47, 50-53.	0.9	49
7	Paradoxical Facilitatory Effect of Low-Dose Alcohol Consumption on Memory Mediated by NMDA Receptors. Journal of Neuroscience, 2007, 27, 10456-10467.	1.7	39
8	N-methyl-d-aspartate receptors amplify activation and aggregation of human platelets. Thrombosis Research, 2014, 133, 837-847.	0.8	35
9	Knockdown and overexpression of NR1 modulates NMDA receptor function. Molecular and Cellular Neurosciences, 2009, 41, 383-396.	1.0	29
10	Stroke Patients Develop Antibodies That React With Components of $\langle i \rangle N \langle i \rangle$ -Methyl- $\langle scp \rangle d \langle scp \rangle$ -Aspartate Receptor Subunit 1 in Proportion to Lesion Size. Stroke, 2013, 44, 2212-2219.	1.0	29
11	Inhibition of glutamate regulated calcium entry into leukemic megakaryoblasts reduces cell proliferation and supports differentiation. Cellular Signalling, 2015, 27, 1860-1872.	1.7	18
12	Inhibition of NMDA receptor function with an anti-GluN1-S2 antibody impairs human platelet function and thrombosis. Platelets, 2017, 28, 799-811.	1.1	18
13	Evidence That GRIN2A Mutations in Melanoma Correlate with Decreased Survival. Frontiers in Oncology, 2014, 3, 333.	1.3	16
14	Altered N-methyl D-aspartate receptor subunit expression causes changes to the circadian clock and cell phenotype in osteoarthritic chondrocytes. Osteoarthritis and Cartilage, 2018, 26, 1518-1530.	0.6	16
15	Selected GRIN2A mutations in melanoma cause oncogenic effects that can be modulated by extracellular glutamate. Cell Calcium, 2016, 60, 384-395.	1.1	11
16	N-Methyl-D-Aspartate Receptor Hypofunction in Meg-01 Cells Reveals a Role for Intracellular Calcium Homeostasis in Balancing Megakaryocytic-Erythroid Differentiation. Thrombosis and Haemostasis, 2020, 120, 671-686.	1.8	11
17	Nâ€methylâ€dâ€aspartate receptor mediated calcium influx supports in vitro differentiation of normal mouse megakaryocytes but proliferation of leukemic cell lines. Research and Practice in Thrombosis and Haemostasis, 2018, 2, 125-138.	1.0	10
18	N-Methyl-D-Aspartate Receptors in Hematopoietic Cells: What Have We Learned?. Frontiers in Physiology, 2020, 11, 577.	1.3	10

#	Article	IF	CITATIONS
19	Cytochemical Characterization of Mouse L1210 Leukemia. Immunological Investigations, 1988, 17, 543-550.	1.0	6
20	lonotropic glutamate receptors in platelets: opposing effects and a unifying hypothesis. Platelets, 2021, 32, 998-1008.	1.1	6
21	Treatment outcomes of patients with acute promyelocytic leukaemia between 2000 and 2017, a retrospective, single centre experience. Leukemia Research, 2020, 93, 106358.	0.4	6
22	The Epidemiology of Myeloproliferative Neoplasms in New Zealand between 2010 and 2017: Insights from the New Zealand Cancer Registry. Current Oncology, 2021, 28, 1544-1557.	0.9	6
23	Deletion of $\langle i \rangle$ Grin1 $\langle i \rangle$ in mouse megakaryocytes reveals NMDA receptor role in platelet function and proplatelet formation. Blood, 2022, 139, 2673-2690.	0.6	6
24	Early treatment of acute promyelocytic leukaemia is accurately guided by the PML protein localisation pattern: real-life experience from a tertiary New Zealand centre. Pathology, 2019, 51, 412-420.	0.3	3
25	Antibodies Targeting Subunit 1 of the N-Methyl-D-Aspartate Receptor May Contribute to Immune Mediated Thrombocytopenia Blood, 2007, 110, 2110-2110.	0.6	3
26	Ethnic differences in acute promyelocytic leukaemia between New Zealand Polynesian and European patients. Hematology, 2021, 26, 215-224.	0.7	2
27	Platelet-Reactive Antibodies in Patients after Ischaemic Strokeâ€"An Epiphenomenon or a Natural Protective Mechanism. International Journal of Molecular Sciences, 2020, 21, 8398.	1.8	1
28	Distinctive features of polycythaemia vera in New Zealand Polynesians. New Zealand Medical Journal, 2018, 131, 38-45.	0.5	1