William Ellsworth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1618584/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Statistical bounds on how induced seismicity stops. Scientific Reports, 2022, 12, 1184.	1.6	17
2	On the Depth of Earthquakes in the Delaware Basin: A Case Study along the Reeves–Pecos County Line. The Seismic Record, 2022, 2, 29-37.	1.3	10
3	Shallow Aseismic Slip in the Delaware Basin Determined by Sentinelâ€1 InSAR. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	13
4	Earthquake Phase Association Using a Bayesian Gaussian Mixture Model. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	40
5	DeepShake: Shaking Intensity Prediction Using Deep Spatiotemporal RNNs for Earthquake Early Warning. Seismological Research Letters, 2022, 93, 1636-1649.	0.8	10
6	Physicsâ€Based Model Reconciles Caldera Collapse Induced Static and Dynamic Ground Motion: Application to Kīlauea 2018. Geophysical Research Letters, 2022, 49, .	1.5	6
7	Reply to: Multiple induced seismicity mechanisms at Castor underground gas storage illustrate the need for thorough monitoring. Nature Communications, 2022, 13, .	5.8	1
8	DevelNet: Earthquake Detection on Develocorder Films with Deep Learning: Application to the Rangely Earthquake Control Experiment. Seismological Research Letters, 2022, 93, 2515-2528.	0.8	3
9	Relative earthquake location procedure for clustered seismicity with a single station. Geophysical Journal International, 2021, 225, 608-626.	1.0	3
10	Depth Constraints on Coseismic Velocity Changes From Frequencyâ€Dependent Measurements of Repeating Earthquake Waveforms. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020421.	1.4	12
11	Machine-Learning-Based High-Resolution Earthquake Catalog Reveals How Complex Fault Structures Were Activated during the 2016–2017 Central Italy Sequence. The Seismic Record, 2021, 1, 11-19.	1.3	68
12	A risk-based approach for managing hydraulic fracturing–induced seismicity. Science, 2021, 372, 504-507.	6.0	24
13	Ambient noise Love wave attenuation tomography for the LASSIE array across the Los Angeles basin. Science Advances, 2021, 7, .	4.7	10
14	Seismicity at the Castor gas reservoir driven by pore pressure diffusion and asperities loading. Nature Communications, 2021, 12, 4783.	5.8	22
15	A Strategy for Choosing Redâ€Light Thresholds to Manage Hydraulic Fracturing Induced Seismicity in North America. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022340.	1.4	11
16	Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nature Communications, 2020, 11, 3952.	5.8	402
17	Revisiting the Timpson Induced Earthquake Sequence: A System of Two Parallel Faults. Geophysical Research Letters, 2020, 47, e2020GL089192.	1.5	10
18	Comparison between Distributed Acoustic Sensing and Geophones: Downhole Microseismic Monitoring of the FORGE Geothermal Experiment. Seismological Research Letters, 2020, 91, 3256-3268.	0.8	53

#	Article	IF	CITATIONS
19	Rescuing Legacy Seismic Data FAIR'ly. Seismological Research Letters, 2020, 91, 1339-1340.	0.8	9
20	Hydraulic Fracturingâ€Induced Seismicity. Reviews of Geophysics, 2020, 58, e2019RG000695.	9.0	202
21	Risk-Informed Recommendations for Managing Hydraulic Fracturing–Induced Seismicity via Traffic Light Protocols. Bulletin of the Seismological Society of America, 2020, 110, 2411-2422.	1.1	28
22	Machineâ€Learningâ€Based Analysis of the Guyâ€Greenbrier, Arkansas Earthquakes: A Tale of Two Sequences. Geophysical Research Letters, 2020, 47, e2020GL087032.	1.5	37
23	Rapid Characterization of the July 2019 Ridgecrest, California, Earthquake Sequence From Raw Seismic Data Using Machineâ€Learning Phase Picker. Geophysical Research Letters, 2020, 47, e2019GL086189.	1.5	72
24	Value at Induced Risk: Injectionâ€Induced Seismic Risk From Lowâ€Probability, Highâ€Impact Events. Geophysical Research Letters, 2020, 47, e2019GL085878.	1.5	29
25	Empirical and Synthetic Approaches to the Calibration of the Local Magnitude Scale, ML, in Southern Kansas. Bulletin of the Seismological Society of America, 2020, 110, 689-697.	1.1	7
26	High-Pass Filters to Reduce the Effects of Broad Atmospheric Contributions in Sbas Inversions: A Case Study in the Delaware Basin. , 2020, , .		1
27	Source Parameter Variability of Intermediateâ€Depth Earthquakes in Japanese Subduction Zones. Journal of Geophysical Research: Solid Earth, 2019, 124, 8704-8725.	1.4	7
28	Velocityâ€Based Earthquake Detection Using Downhole Distributed Acoustic Sensing—Examples from the San Andreas Fault Observatory at Depth. Bulletin of the Seismological Society of America, 2019, 109, 2491-2500.	1.1	23
29	Rapid Earthquake Association and Location. Seismological Research Letters, 2019, 90, 2276-2284.	0.8	114
30	Unsupervised Largeâ€Scale Search for Similar Earthquake Signals. Bulletin of the Seismological Society of America, 2019, 109, 1451-1468.	1.1	6
31	Seismology with Dark Data: Imageâ€Based Processing of Analog Records Using Machine Learning for the Rangely Earthquake Control Experiment. Seismological Research Letters, 2019, 90, 553-562.	0.8	16
32	Seismic Velocity Estimation Using Passive Downhole Distributed Acoustic Sensing Records: Examples From the San Andreas Fault Observatory at Depth. Journal of Geophysical Research: Solid Earth, 2019, 124, 6931-6948.	1.4	58
33	Robust Stress Drop Estimates of Potentially Induced Earthquakes in Oklahoma: Evaluation of Empirical Green's Function. Journal of Geophysical Research: Solid Earth, 2019, 124, 5854-5866.	1.4	14
34	Managing injection-induced seismic risks. Science, 2019, 364, 730-732.	6.0	129
35	Unsupervised Clustering of Seismic Signals Using Deep Convolutional Autoencoders. IEEE Geoscience and Remote Sensing Letters, 2019, 16, 1693-1697.	1.4	103
36	An Inâ€Depth Seismological Analysis Revealing a Causal Link Between the 2017 M _W 5.5 Pohang Earthquake and ECS Project. Journal of Geophysical Research: Solid Earth, 2019, 124, 13060-13078.	1.4	70

#	Article	IF	CITATIONS
37	Foreshocks and Mainshock Nucleation of the 1999 <i>M</i> _{<i>w</i>} 7.1 Hector Mine, California, Earthquake. Journal of Geophysical Research: Solid Earth, 2019, 124, 1569-1582.	1.4	58
38	How faults wake up: The Guthrie-Langston, Oklahoma earthquakes. The Leading Edge, 2018, 37, 100-106.	0.4	65
39	The 2013–2016 Induced Earthquakes in Harper and Sumner Counties, Southern Kansas. Bulletin of the Seismological Society of America, 2018, 108, 674-689.	1.1	55
40	<i>Erratum to</i> The 2013–2016 Induced Earthquakes in Harper and Sumner Counties, Southern Kansas. Bulletin of the Seismological Society of America, 2018, 108, 3699-3700.	1.1	0
41	Nucleation of the 1999 Izmit earthquake by a triggered cascade of foreshocks. Nature Geoscience, 2018, 11, 531-535.	5.4	139
42	Induced seismicity response of hydraulic fracturing: results of a multidisciplinary monitoring at the Wysin site, Poland. Scientific Reports, 2018, 8, 8653.	1.6	27
43	2017 Oneâ€Year Seismicâ€Hazard Forecast for the Central and Eastern United States from Induced and Natural Earthquakes. Seismological Research Letters, 2017, 88, 772-783.	0.8	94
44	Stress drops of induced and tectonic earthquakes in the central United States are indistinguishable. Science Advances, 2017, 3, e1700772.	4.7	95
45	A Systematic Assessment of the Spatiotemporal Evolution of Fault Activation Through Induced Seismicity in Oklahoma and Southern Kansas. Journal of Geophysical Research: Solid Earth, 2017, 122, 10,189.	1.4	92
46	Seismicity During the Initial Stages of the Guyâ€Greenbrier, Arkansas, Earthquake Sequence. Journal of Geophysical Research: Solid Earth, 2017, 122, 9253-9274.	1.4	67
47	Waveformâ€Relocated Earthquake Catalog for Oklahoma and Southern Kansas Illuminates the Regional Fault Network. Seismological Research Letters, 2017, 88, 1252-1258.	0.8	106
48	Assessing Groundâ€Motion Amplitudes and Attenuation for Smallâ€toâ€Moderate Induced and Tectonic Earthquakes in the Central and Eastern United States. Seismological Research Letters, 2017, 88, 1379-1389.	0.8	24
49	Geodetic Slip Model of the 3 September 2016 <i>M</i> _w Â5.8 Pawnee, Oklahoma, Earthquake: Evidence for Faultâ€Zone Collapse. Seismological Research Letters, 2017, 88, 983-993.	0.8	15
50	Fluidâ€faulting evolution in high definition: Connecting fault structure and frequencyâ€magnitude variations during the 2014 Long Valley Caldera, California, earthquake swarm. Journal of Geophysical Research: Solid Earth, 2016, 121, 1776-1795.	1.4	171
51	3â€Ð velocity structure in southern Haiti from local earthquake tomography. Journal of Geophysical Research: Solid Earth, 2016, 121, 8813-8832.	1.4	11
52	Stress drop estimates of potentially induced earthquakes in the Guyâ€Greenbrier sequence. Journal of Geophysical Research: Solid Earth, 2016, 121, 6597-6607.	1.4	85
53	A new strategy for earthquake focal mechanisms using waveformâ€correlationâ€derived relative polarities and cluster analysis: Application to the 2014 Long Valley Caldera earthquake swarm. Journal of Geophysical Research: Solid Earth, 2016, 121, 8622-8641.	1.4	39
54	Surface uplift and time-dependent seismic hazard due to fluid injection in eastern Texas. Science, 2016, 353, 1416-1419.	6.0	127

#	Article	IF	CITATIONS
55	USGS scientists open to change. Science, 2016, 353, 998-998.	6.0	0
56	Scaling relation between earthquake magnitude and the departure time from <i>P</i> wave similar growth. Geophysical Research Letters, 2016, 43, 9053-9060.	1.5	22
57	Increasing seismicity in the U. S. midcontinent: Implications for earthquake hazard. The Leading Edge, 2015, 34, 618-626.	0.4	90
58	Causal factors for seismicity near Azle, Texas. Nature Communications, 2015, 6, 6728.	5.8	168
59	The 17 May 2012 <i>M</i> 4.8 earthquake near Timpson, East Texas: An event possibly triggered by fluid injection. Journal of Geophysical Research: Solid Earth, 2014, 119, 581-593.	1.4	101
60	Injection-Induced Earthquakes. Science, 2013, 341, 1225942.	6.0	1,758
61	Crustal Structure and Fault Geometry of the 2010 Haiti Earthquake from Temporary Seismometer Deployments. Bulletin of the Seismological Society of America, 2013, 103, 2305-2325.	1.1	43
62	Deep rock damage in the San Andreas Fault revealed by P- and S-type fault-zone-guided waves. Geological Society Special Publication, 2011, 359, 39-53.	0.8	35
63	Precise Estimation of Repeating Earthquake Moment: Example from Parkfield, California. Bulletin of the Seismological Society of America, 2010, 100, 1952-1961.	1.1	26
64	Source scaling relationships of microearthquakes at Parkfield, CA, determined using the SAFOD Pilot Hole Seismic Array. Geophysical Monograph Series, 2006, , 81-90.	0.1	118
65	Apparent break in earthquake scaling due to path and site effects on deep borehole recordings. Journal of Geophysical Research, 2003, 108, .	3.3	224
66	Imaging the complexity of an active normal fault system: The 1997 Colfiorito (central Italy) case study. Journal of Geophysical Research, 2003, 108, .	3.3	141
67	High-resolution image of Calaveras Fault seismicity. Journal of Geophysical Research, 2002, 107, ESE 5-1-ESE 5-16.	3.3	172
68	Fault structure and kinematics of the Long Valley Caldera region, California, revealed by high-accuracy earthquake hypocenters and focal mechanism stress inversions. Journal of Geophysical Research, 2002, 107, ESE 9-1-ESE 9-19.	3.3	83
69	Fault structure and mechanics of the Hayward Fault, California, from double-difference earthquake locations. Journal of Geophysical Research, 2002, 107, ESE 3-1.	3.3	180
70	Observations of Earthquake Source Parameters at 2 km Depth in the Long Valley Caldera, Eastern California. Bulletin of the Seismological Society of America, 2001, 91, 165-177.	1.1	138
71	Slip-parallel seismic lineations on the Northern Hayward Fault, California. Geophysical Research Letters, 1999, 26, 3525-3528.	1.5	89
72	Properties of the seismic nucleation phase. Tectonophysics, 1996, 261, 209-227.	0.9	134

#	Article	IF	CITATIONS
73	Detailed observations of California foreshock sequences: Implications for the earthquake initiation process. Journal of Geophysical Research, 1996, 101, 22371-22392.	3.3	244
74	Stability of coda wave attenuation during the Loma Prieta, California, earthquake sequence. Journal of Geophysical Research, 1995, 100, 3977-3987.	3.3	46
75	Seismic Evidence for an Earthquake Nucleation Phase. Science, 1995, 268, 851-855.	6.0	442
76	Foreshock sequence of the 1992 Landers, California, earthquake and its implications for earthquake nucleation. Journal of Geophysical Research, 1995, 100, 9865-9880.	3.3	175
77	Initial reference models in local earthquake tomography. Journal of Geophysical Research, 1994, 99, 19635-19646.	3.3	822
78	Monitoring velocity variations in the crust using earthquake doublets: An application to the Calaveras Fault, California. Journal of Geophysical Research, 1984, 89, 5719-5731.	3.3	840
79	Triggering of the Pohang, Korea, Earthquake (MwÂ5.5) by Enhanced Geothermal System Stimulation. Seismological Research Letters, 0, , .	0.8	74
80	Scientific Exploration of Induced SeisMicity and Stress (SEISMS). Scientific Drilling, 0, 23, 57-63.	1.0	18