Lucille Joanna S Borlaza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1618432/publications.pdf

Version: 2024-02-01

1464605 1526636 10 412 10 7 citations g-index h-index papers 21 21 21 673 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cellulose in atmospheric particulate matter at rural and urban sites across France and Switzerland. Atmospheric Chemistry and Physics, 2022, 22, 6021-6043.	1.9	4
2	Nine-year trends of PM \langle sub \rangle 10 \langle sub \rangle sources and oxidative potential in a rural background site in France. Atmospheric Chemistry and Physics, 2022, 22, 8701-8723.	1.9	16
3	Disparities in particulate matter (PM ₁₀) origins and oxidative potential at a city scale (Grenoble, France) – PartÂ1: Source apportionment at three neighbouring sites. Atmospheric Chemistry and Physics, 2021, 21, 5415-5437.	1.9	21
4	Disparities in particulate matter (PM ₁₀) origins and oxidative potential at a city scale (Grenoble, France) – Part 2: Sources of PM ₁₀ oxidative potential using multiple linear regression analysis and the predictive applicability of multilayer perceptron neural network analysis.	1.9	33
5	Atmospheric Chemistry and Physics, 2021, 21, 9719-9739. Source apportionment of atmospheric PM ₁₀ oxidative potential: synthesis of 15Âyear-round urban datasets in France. Atmospheric Chemistry and Physics, 2021, 21, 11353-11378.	1.9	30
6	Comparison of physical and chemical characteristics and oxidative potential of fine particles emitted from rice straw and pine stem burning. Environmental Pollution, 2020, 267, 115599.	3.7	14
7	Simultaneous Measurements of Chemical Compositions of Fine Particles during Winter Haze Period in Urban Sites in China and Korea. Atmosphere, 2020, 11, 292.	1.0	6
8	Differential toxicities of fine particulate matters from various sources. Scientific Reports, 2018, 8, 17007.	1.6	233
9	Oxidative potential of fine ambient particles in various environments. Environmental Pollution, 2018, 243, 1679-1688.	3.7	45
10	Physicochemical properties and oxidative potential of fine particles produced from coal combustion. Aerosol Science and Technology, 2018, 52, 1134-1144.	1.5	4