
Francisco Campos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1617415/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proteomic Analysis of Embryo Isolated From Mature Jatropha curcas L. Seeds. Frontiers in Plant Science, 2022, 13, 843764.	1.7	1
2	Monitoring casbene synthase in Jatropha curcas tissues using targeted proteomics. Plant Methods, 2021, 17, 15.	1.9	1
3	Proteome Dynamics of the Developing AçaÃ-Berry Pericarp (<i>Euterpe oleracea</i> Mart.). Journal of Proteome Research, 2020, 19, 437-445.	1.8	6
4	Quantitative Proteome Analysis of Jatropha curcas L. Genotypes with Contrasting Levels of Phorbol Esters. Proteomics, 2020, 20, 1900273.	1.3	1
5	Proteome dynamics of the cotyledonary haustorium and endosperm in the course of germination of Euterpe oleracea seeds. Plant Science, 2020, 298, 110569.	1.7	5
6	Inâ€Depth Proteome Analysis of Ricinus communis Pollens. Proteomics, 2019, 19, 1800347.	1.3	0
7	Genetic Transformation of Recalcitrant Cassava by Embryo Selection and Increased Hormone Levels. Methods and Protocols, 2018, 1, 42.	0.9	8
8	Common Features Between the Proteomes of Floral and Extrafloral Nectar From the Castor Plant (Ricinus Communis) and the Proteomes of Exudates From Carnivorous Plants. Frontiers in Plant Science, 2018, 9, 549.	1.7	8
9	Seed development of Jatropha curcas L. (Euphorbiaceae): integrating anatomical, ultrastructural and molecular studies. Plant Cell Reports, 2017, 36, 1707-1716.	2.8	8
10	Time-course proteome analysis of developing extrafloral nectaries of <i>Ricinus communis</i> . Proteomics, 2016, 16, 629-633.	1.3	17
11	Deep proteome analysis of gerontoplasts from the inner integument of developing seeds of Jatropha curcas. Journal of Proteomics, 2016, 143, 346-352.	1.2	12
12	Proteomic Analysis of the Endosperm Ontogeny of <i>Jatropha curcas</i> L. Seeds. Journal of Proteome Research, 2015, 14, 2557-2568.	1.8	21
13	Proteome Analysis of the Inner Integument from Developing <i>Jatropha curcas</i> L. Seeds. Journal of Proteome Research, 2014, 13, 3562-3570.	1.8	14
14	Differential expression of cysteine peptidase genes in the inner integument and endosperm of developing seeds of Jatropha curcas L. (Euphorbiaceae). Plant Science, 2013, 213, 30-37.	1.7	21
15	Isotope Labeling-Based Quantitative Proteomics of Developing Seeds of Castor Oil Seed (<i>Ricinus) Tj ETQq1</i>	1 0.78431 1.8	4 rgBT /Overic
16	Proteome Analysis of Plastids from Developing Seeds of <i>Jatropha curcas</i> L. Journal of Proteome Research, 2013, 12, 5137-5145.	1.8	17
17	Proteomic profile of the nucellus of castor bean (Ricinus communis L.) seeds during development. Journal of Proteomics, 2012, 75, 1933-1939.	1.2	31
18	Performance of Isobaric and Isotopic Labeling in Quantitative Plant Proteomics. Journal of Proteome Research, 2012, 11, 3046-3052.	1.8	52

FRANCISCO CAMPOS

#	Article	IF	CITATIONS
19	Global proteome changes in larvae of Callosobruchus maculatus Proteomics, 2012, 12, 2704-2715.	1.3	30
20	Analysis of organogenic competence of cotyledons of Jatropha curcas and their in vitro histological behavior. African Journal of Biotechnology, 2011, 10, 11249-11258.	0.3	2
21	Heat and phosphate starvation effects on the proteome, morphology and chemical composition of the biomining bacteria Acidithiobacillus ferrooxidans. World Journal of Microbiology and Biotechnology, 2011, 27, 1469-1479.	1.7	12
22	10.1007/BF00163693., 2011,,.		3
23	Transcriptome analysis of the oil-rich seed of the bioenergy crop Jatropha curcas L. BMC Genomics, 2010, 11, 462.	1.2	118
24	Proteome analysis of castor bean seeds. Pure and Applied Chemistry, 2010, 82, 259-267.	0.9	15
25	Biolistic-mediated genetic transformation of cowpea (Vigna unguiculata) and stable Mendelian inheritance of transgenes. Plant Cell Reports, 2008, 27, 1475-1483.	2.8	39
26	Proteome analysis of secondary somatic embryogenesis in cassava (Manihot esculenta). Plant Science, 2008, 175, 717-723.	1.7	55
27	Somatic embryogenesis in cassava genotypes from the northeast of Brazil. Brazilian Archives of Biology and Technology, 2007, 50, 201-206.	0.5	12
28	Proteome analysis of embryogenic cell suspensions of cowpea (Vigna unguiculata). Plant Cell Reports, 2007, 26, 1333-1343.	2.8	43
29	Comparison of the partial proteomes of the venoms of Brazilian spiders of the genus Phoneutria. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2006, 142, 173-187.	1.3	87
30	Somatic embryogenesis and plant regeneration in Opuntia ficus-indica (L.) Mill. (Cactaceae). Scientia Horticulturae, 2006, 108, 15-21.	1.7	27
31	A 2D-PAGE ANALYSIS OF PROTEIN DEPOSITION DURING THE DEVELOPMENT OF PHYLLOCLADS OF OPUNTIA FICUS-INDICA. Acta Horticulturae, 2006, , 111-116.	0.1	0
32	Protein Extraction From Cowpea Tissues for 2-D Gel Electrophoresis and MS Analysis. Chromatographia, 2005, 62, 447-450.	0.7	33
33	Growth and Protein Pattern in Cowpea Seedlings Subjected to Salinity. Biologia Plantarum, 2003, 46, 341-346.	1.9	19
34	Isolation and Characterisation of a Reserve Protein from the Seeds of Cereus jamacaru (Cactaceae). Brazilian Archives of Biology and Technology, 2001, 44, 331-335.	0.5	5
35	Biochemical basis of the toxicity of manipueira (liquid extract of cassava roots) to nematodes and insects. Phytochemical Analysis, 2000, 11, 57-60.	1.2	15
36	Biochemical basis of the toxicity of manipueira (liquid extract of cassava roots) to nematodes and insects. , 2000, 11, 57.		1

#	Article	IF	CITATIONS
37	Biolistic-mediated transient gene expression in shoot apical meristems of the prickly-pear (Opuntia) Tj ETQq1 1 C).784314 r 0.5	gB _g T /Overloc
38	Purification and Properties of a Ribonuclease from Cowpea Cotyledons. Biologia Plantarum, 1999, 42, 525-532.	1.9	11
39	Establishment of callus and cell suspension cultures of Opuntia ficus-indica. Plant Cell, Tissue and Organ Culture, 1999, 58, 155-157.	1.2	19
40	Tissue distribution and deposition pattern of a cellulosic parenchyma-specific protein from cassava roots. Brazilian Archives of Biology and Technology, 1998, 41, 1-9.	0.5	6
41	The expression of papain inhibitors during development of cowpea seeds. Plant Science, 1991, 74, 179-184.	1.7	42
42	Proteinases and amylases of larval midgut of <i>Zabrotes subfasciatus</i> reared on cowpea (<i>Vigna) Tj ETQq(</i>	0.0 rgBT 0.7	/Overlock 10
43	Resolution and partial characterization of proteinases and α-amylases from midguts of larvae of the bruchid beetle Callosobruchus maculatus (F.). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1989, 92, 51-57.	0.2	53
44	Poor correlation between the levels of proteinase inhibitors found in seeds of different cultivars of cowpea (Vigna unguiculata) and the resistance/susceptibility to predation by Callosobruchus maculatus. Journal of Agricultural and Food Chemistry, 1989, 37, 1139-1143.	2.4	100
45	The isolation and amino acid sequence of the β- and γ-subunits of the lectin from the seeds of Dioclea Grandiflora. Phytochemistry, 1987, 26, 1435-1440.	1.4	10
46	The amino acid sequence and reactive (inhibitory) site of the major trypsin isoinhibitor (DE5) isolated from seeds of the Brazilian Carolina tree (Adenanthera pavonina L.). BBA - Proteins and Proteomics, 1986, 872, 134-140.	2.1	61

The complete amino acid sequence of the major alpha subunit of the lectin from the seeds of Dioclea grandiflora (Mart). FEBS Journal, 1984, 144, 101-111.

The complete amino acid sequence of the \hat{l}_{\pm} -amylase inhibitor I-2 from seeds of ragi (Indian finger millet,) Tj ETQq0 $\hat{\rho}_{1,3}$ rgBT /Qyerlock 10 48

49	The complete amino acid sequence of the bifunctional α-amylase/trypsin inhibitor from seeds of ragi (Indian finger millet, Eleusine coracana Gaertn.). FEBS Letters, 1983, 152, 300-304.	1.3	102
50	Morphoanatomical and histochemical studies of the seed development of Euterpe oleracea (Arecaceae). Rodriguesia, 0, 72, .	0.9	2