Maria Geraldine Veldhuizen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1617243/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Massively collaborative crowdsourced research on COVID19 and the chemical senses: Insights and outcomes. Food Quality and Preference, 2022, 97, 104483.	4.6	8
2	Large-scale GWAS of food liking reveals genetic determinants and genetic correlations with distinct neurophysiological traits. Nature Communications, 2022, 13, 2743.	12.8	22
3	Future Directions for Chemosensory Connectomes: Best Practices and Specific Challenges. Frontiers in Systems Neuroscience, 2022, 16, .	2.5	3
4	Post-traumatic olfactory loss and brain response beyond olfactory cortex. Scientific Reports, 2021, 11, 4043.	3.3	11
5	Recent Smell Loss Is the Best Predictor of COVID-19 Among Individuals With Recent Respiratory Symptoms. Chemical Senses, 2021, 46, .	2.0	119
6	One Year Follow-Up of Taste-Related Reward Associations with Weight Loss Suggests a Critical Time to Mitigate Weight Regain Following Bariatric Surgery. Nutrients, 2021, 13, 3943.	4.1	10
7	tVNS Increases Liking of Orally Sampled Low-Fat Foods: A Pilot Study. Frontiers in Human Neuroscience, 2020, 14, 600995.	2.0	6
8	Identification of an Amygdala–Thalamic Circuit That Acts as a Central Gain Mechanism in Taste Perceptions. Journal of Neuroscience, 2020, 40, 5051-5062.	3.6	23
9	More Than Smell—COVID-19 Is Associated With Severe Impairment of Smell, Taste, and Chemesthesis. Chemical Senses, 2020, 45, 609-622.	2.0	375
10	Short-Term Consumption of Sucralose with, but Not without, Carbohydrate Impairs Neural and Metabolic Sensitivity to Sugar in Humans. Cell Metabolism, 2020, 31, 493-502.e7.	16.2	79
11	International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020). Frontiers in Human Neuroscience, 2020, 14, 568051.	2.0	143
12	Taste-related reward is associated with weight loss following bariatric surgery. Journal of Clinical Investigation, 2020, 130, 4370-4381.	8.2	38
13	Good practice in food-related neuroimaging. American Journal of Clinical Nutrition, 2019, 109, 491-503.	4.7	56
14	Interactions of Lemon, Sucrose and Citric Acid in Enhancing Citrus, Sweet and Sour Flavors. Chemical Senses, 2018, 43, 17-26.	2.0	22
15	Sweet taste potentiates the reinforcing effects of e-cigarettes. European Neuropsychopharmacology, 2018, 28, 1089-1102.	0.7	26
16	Contextual Effects in Judgments of Taste Intensity: No Assimilation, Sometimes Contrast. Perception, 2017, 46, 268-282.	1.2	4
17	Distracted Sniffing of Food Odors Leads to Diminished Behavioral and Neural Responses. Chemical Senses, 2017, 42, 719-722.	2.0	2
18	Integration of Sweet Taste and Metabolism Determines Carbohydrate Reward. Current Biology, 2017, 27, 2476-2485.e6.	3.9	67

#	Article	IF	CITATIONS
19	Micturition Drive is Associated with Decreased Brain Response to Palatable Milkshake in the Human Anterior Insular Cortex. Chemosensory Perception, 2016, 9, 174-181.	1.2	0
20	Fatty acid amide supplementation decreases impulsivity in young adult heavy drinkers. Physiology and Behavior, 2016, 155, 131-140.	2.1	10
21	Flavor Identification and Intensity: Effects of Stimulus Context. Chemical Senses, 2016, 41, 249-259.	2.0	7
22	Perceptual and Brain Response to Odors Is Associated with Body Mass Index and Postprandial Total Ghrelin Reactivity to a Meal. Chemical Senses, 2016, 41, 233-248.	2.0	28
23	Weighing the evidence: Variance in brain responses to milkshake receipt is predictive of eating behavior. NeuroImage, 2016, 128, 273-283.	4.2	31
24	Opposing relationships of BMI with BOLD and dopamine D2/3 receptor binding potential in the dorsal striatum. Synapse, 2015, 69, 195-202.	1.2	53
25	What Can the Brain Teach Us about Winemaking? An fMRI Study of Alcohol Level Preferences. PLoS ONE, 2015, 10, e0119220.	2.5	26
26	Response Times to Gustatory–Olfactory Flavor Mixtures: Role of Congruence. Chemical Senses, 2015, 40, 565-575.	2.0	14
27	Basolateral Amygdala Response to Food Cues in the Absence of Hunger Is Associated with Weight Gain Susceptibility. Journal of Neuroscience, 2015, 35, 7964-7976.	3.6	124
28	The neural signature of satiation is associated with ghrelin response and triglyceride metabolism. Physiology and Behavior, 2014, 136, 63-73.	2.1	59
29	Decreased caudate response to milkshake is associated with higher body mass index and greater impulsivity. Physiology and Behavior, 2013, 121, 103-111.	2.1	125
30	Sensory Neuroscience: Taste Responses in Primary Olfactory Cortex. Current Biology, 2013, 23, R157-R159.	3.9	23
31	Verbal descriptors influence hypothalamic response to low-calorie drinks. Molecular Metabolism, 2013, 2, 270-280.	6.5	16
32	Midbrain response to milkshake correlates with ad libitum milkshake intake in the absence of hunger. Appetite, 2013, 60, 168-174.	3.7	48
33	Metabolic Regulation of Brain Response to Food Cues. Current Biology, 2013, 23, 878-883.	3.9	89
34	Identification of Gustatory-Olfactory Flavor Mixtures: Effects of Linguistic Labeling. Chemical Senses, 2013, 38, 305-313.	2.0	9
35	Detecting Gustatory-Olfactory Flavor Mixtures: Models of Probability Summation. Chemical Senses, 2012, 37, 263-277.	2.0	12
36	An fMRI Study of the Interactions Between the Attention and the Gustatory Networks. Chemosensory Perception, 2012, 5, 117-127.	1.2	18

Maria Geraldine Veldhuizen

#	Article	IF	CITATIONS
37	Identification of human gustatory cortex by activation likelihood estimation. Human Brain Mapping, 2011, 32, 2256-2266.	3.6	176
38	Modality-Specific Neural Effects of Selective Attention to Taste and Odor. Chemical Senses, 2011, 36, 747-760.	2.0	76
39	The Anterior Insular Cortex Represents Breaches of Taste Identity Expectation. Journal of Neuroscience, 2011, 31, 14735-14744.	3.6	68
40	The insular taste cortex contributes to odor quality coding. Frontiers in Human Neuroscience, 2010, 4, .	2.0	38
41	Coactivation of Gustatory and Olfactory Signals in Flavor Perception. Chemical Senses, 2010, 35, 121-133.	2.0	53
42	Flavors prime processing of affectively congruent food words and non-food words. Appetite, 2010, 54, 71-76.	3.7	14
43	Neural correlates of evaluative compared with passive tasting. European Journal of Neuroscience, 2009, 30, 327-338.	2.6	77
44	Sense of smell disorder and health-related quality of life Rehabilitation Psychology, 2009, 54, 404-412.	1.3	115
45	Separable Substrates for Anticipatory and Consummatory Food Chemosensation. Neuron, 2008, 57, 786-797.	8.1	161
46	Relation of reward from food intake and anticipated food intake to obesity: A functional magnetic resonance imaging study Journal of Abnormal Psychology, 2008, 117, 924-935.	1.9	675
47	Trying to Detect Taste in a Tasteless Solution: Modulation of Early Gustatory Cortex by Attention to Taste. Chemical Senses, 2007, 32, 569-581.	2.0	167
48	The Role of the Human Orbitofrontal Cortex in Taste and Flavor Processing. Annals of the New York Academy of Sciences, 2007, 1121, 136-151.	3.8	81
49	Temporal aspects of hedonic and intensity responses. Food Quality and Preference, 2006, 17, 489-496.	4.6	27
50	Dissociating Pleasantness and Intensity with Quinine Sulfate/Sucrose Mixtures in Taste. Chemical Senses, 2006, 31, 649-653.	2.0	10
51	Comparison times are longer for hedonic than for intensity judgements of taste stimuli. Physiology and Behavior, 2005, 84, 489-495.	2.1	5