Rajavel Srinivasan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1616503/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid Assembly and in Situ Screening of Bidentate Inhibitors of Protein Tyrosine Phosphatases. Organic Letters, 2006, 8, 713-716.	2.4	112
2	Expanded Utility of the Native Chemical Ligation Reaction. Chemistry - A European Journal, 2004, 10, 4664-4672.	1.7	90
3	Functionalization at Will of Rim-Differentiated Pillar[5]arenes. Organic Letters, 2019, 21, 3976-3980.	2.4	69
4	High-throughput synthesis of azide libraries suitable for direct "click―chemistry and in situ screening. Organic and Biomolecular Chemistry, 2009, 7, 1821.	1.5	56
5	Methods of using click chemistry in the discovery of enzyme inhibitors. Nature Protocols, 2007, 2, 2655-2664.	5.5	47
6	Divergent Synthesis of Dihydroxanthene-Hemicyanine Fused Near-Infrared Fluorophores through the Late-Stage Amination of a Bifunctional Precursor. Organic Letters, 2016, 18, 5122-5125.	2.4	30
7	Activity-Based Fingerprinting of Proteases. ChemBioChem, 2006, 7, 32-36.	1.3	27
8	A small-molecule inhibitor of the BRCA2-RAD51 interaction modulates RAD51 assembly and potentiates DNA damage-induced cell death. Cell Chemical Biology, 2021, 28, 835-847.e5.	2.5	27
9	Click Chemistry as a Highâ€Throughput Amenable Platform in Catalomics. QSAR and Combinatorial Science, 2007, 26, 1135-1144.	1.5	25
10	Solid-Phase Assembly and In Situ Screening of Protein Tyrosine Phosphatase Inhibitors. Organic Letters, 2008, 10, 2295-2298.	2.4	25
11	Regioselective Conversion of Arenes to <i>N</i> â€arylâ€1,2,3â€triazoles Using CH Borylation. Chemistry - A European Journal, 2014, 20, 11680-11684.	1.7	19
12	Allosteric Small-Molecule Serine/Threonine Kinase Inhibitors. Advances in Experimental Medicine and Biology, 2019, 1163, 253-278.	0.8	18
13	Chemoselective Amideâ€Forming Ligation Between Acylsilanes and Hydroxylamines Under Aqueous Conditions. Angewandte Chemie - International Edition, 2021, 60, 7024-7029.	7.2	14
14	Allosteric Targeting of Aurora A Kinase Using Small Molecules: A Step Forward Towards Next Generation Medicines?. Current Medicinal Chemistry, 2019, 26, 2234-2242.	1.2	10
15	Chemical Approaches for Live Cell Bioimaging. Combinatorial Chemistry and High Throughput Screening, 2004, 7, 597-604.	0.6	10
16	<i>meta</i> â€Nitration of Arenes Bearing <i>ortho</i> / <i>para</i> Directing Group(s) Using Câ^'H Borylation. Chemistry - A European Journal, 2019, 25, 8018-8023.	1.7	9
17	Divergent synthesis of 5′,7′-difluorinated dihydroxanthene-hemicyanine fused near-infrared fluorophores. Organic and Biomolecular Chemistry, 2019, 17, 4291-4300.	1.5	6
18	SLAP reagents for the photocatalytic synthesis of C3/C5-substituted, N-unprotected selenomorpholines and 1,4-selenazepanes. Chemical Communications, 2020, 56, 12546-12549.	2.2	6

RAJAVEL SRINIVASAN

#	Article	IF	CITATIONS
19	Sterically controlled C–H/C–H homocoupling of arenes <i>via</i> C–H borylation. Organic and Biomolecular Chemistry, 2019, 17, 5703-5707.	1.5	4
20	SnAP reagents for the synthesis of selenomorpholines and 1,4-selenazepanes and their biological evaluation. Chemical Communications, 2020, 56, 1780-1783.	2.2	3
21	Synthesis and spectral properties of 6′-triazolyl-dihydroxanthene-hemicyanine fused near-infrared dyes. New Journal of Chemistry, 2020, 44, 12208-12215.	1.4	3
22	Rapid Access to Diverse Potassium Acyltrifluoroborates (KATs) through Late-Stage Chemoselective Cross-Coupling Reactions. Organic Letters, 2021, 23, 1886-1890.	2.4	3
23	Chemoselective Amideâ€Forming Ligation Between Acylsilanes and Hydroxylamines Under Aqueous Conditions. Angewandte Chemie, 2021, 133, 7100-7105.	1.6	2