Navjeet Kaur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1616236/publications.pdf

Version: 2024-02-01

155 papers	5,502 citations	46918 47 h-index	59 g-index
199	199	199	957
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Synthesis of five-membered nitrogen-containing heterocycles using copper. Journal of the Iranian Chemical Society, 2022, 19, 679-727.	1.2	7
2	Thiadiazole Synthesis. , 2022, , 115-147.		O
3	Phosphorus Pentasulfide in Heterocycle Synthesis. , 2022, , 245-306.		O
4	S-Heterocycle Synthesis., 2022,, 175-214.		O
5	Five-Membered S-Heterocycle Synthesis. , 2022, , 149-174.		O
6	Thiazole Synthesis., 2022,, 35-62.		2
7	Thiazole Synthesis by Thionation of C=O to C=S. , 2022, , 63-114.		O
8	O- and N-Heterocycles Synthesis. , 2022, , 215-244.		0
9	Raney nickel-assisted nitro group reduction for the synthesis of N-, O-, and S-heterocycles. , 2022, , 43-80.		O
10	Miscellaneous use of Raney nickel for the synthesis of heterocycles. , 2022, , 159-210.		0
11	Raney nickel-assisted nitro group reduction for the synthesis of five-membered N-heterocycles. , 2022, , 1-42.		O
12	Synthesis of heterocycles from oxazoles and oxazines using Raney nickel., 2022, , 119-159.		0
13	Synthesis of heterocycles from cyanide, oxime, and azo compounds using Raney nickel., 2022, , 81-118.		O
14	Synthesis of heterocycles using guanidine: An overview. Synthetic Communications, 2022, 52, 1547-1580.	1.1	22
15	Polyaniline-TiO2-based photocatalysts for dyes degradation. Polymer Bulletin, 2021, 78, 4743-4777.	1.7	63
16	Crown ethers for the synthesis of heterocycles. Current Organic Chemistry, 2021, 25, .	0.9	26
17	Dicarbonyl compounds in <i>O-</i> heterocycle synthesis. Synthetic Communications, 2021, 51, 2423-2444.	1.1	46
18	Synthetic Aspects of Condensed Pyrimidine Derivatives. Current Organic Chemistry, 2021, 25, 2625-2649.	0.9	24

#	Article	IF	CITATIONS
19	Silver-assisted Syntheses of Fused Five-membered N-heterocycles. Current Organic Chemistry, 2021, 25, 2232-2257.	0.9	20
20	Synthetic and Biological Attributes of Pyrimidine Derivatives: A Recent Update. Current Organic Synthesis, 2021, 18, 790-825.	0.7	29
21	Recent Developments in the Synthesis of Five- and Six-membered N-heterocycles from Dicarbonyl Compounds. Current Organic Chemistry, 2021, 25, 2765-2790.	0.9	41
22	Synthesis of five-membered $\langle i \rangle N \langle i \rangle$ -heterocycles using Rh based metal catalysts. Synthetic Communications, 2020, 50, 137-160.	1.1	27
23	Metal and organo-complex promoted synthesis of fused five-membered <i>O</i> -heterocycles. Synthetic Communications, 2020, 50, 457-505.	1.1	20
24	Ag-mediated synthesis of six-membered <i>N</i> -heterocycles. Synthetic Communications, 2020, 50, 753-795.	1.1	25
25	Six-membered N-heterocycles. , 2020, , 1-64.		0
26	Six-membered fused N-heterocycles. , 2020, , 65-120.		0
27	Six-membered fused N-polyheterocycles. , 2020, , 121-181.		0
28	Six-membered N,N-heterocycles. , 2020, , 183-241.		2
29	Six-membered N,N-polyheterocycles. , 2020, , 243-294.		0
30	Six-membered O,N-heterocycles. , 2020, , 413-458.		0
31	Six-membered S-heterocycles. , 2020, , 459-503.		1
32	Six-membered O-heterocycles. , 2020, , 295-350.		0
33	Six-membered O,O-heterocycles. , 2020, , 351-412.		1
34	Rhodium catalysis in the synthesis of fused five-membered <i>N-</i> heterocycles. Inorganic and Nano-Metal Chemistry, 2020, 50, 1260-1289.	0.9	22
35	Cu-assisted C–N bond formations in six-membered <i>N</i> heterocycle synthesis. Synthetic Communications, 2020, 50, 1075-1132.	1.1	22
36	Palladium acetate assisted synthesis of five-membered <i>N-</i> polyheterocycles. Synthetic Communications, 2020, 50, 1567-1621.	1.1	29

#	Article	IF	CITATIONS
37	Copper-assisted synthesis of five-membered <i>O-</i> heterocycles. Inorganic and Nano-Metal Chemistry, 2020, 50, 705-740.	0.9	21
38	Photochemical C–N bond forming reactions for the synthesis of five-membered fused <i>N-</i> heterocycles. Synthetic Communications, 2020, 50, 1286-1334.	1.1	28
39	Organo or Metal Complex Catalyzed Synthesis of Five-membered Oxygen Heterocycles. Current Organic Chemistry, 2020, 23, 2822-2847.	0.9	27
40	Five-Membered Fused Polyheterocycles. , 2020, , 126-169.		0
41	Five-Membered N-Heterocycles. , 2020, , 1-51.		0
42	Five-Membered Fused N,N-Heterocycles. , 2020, , 243-283.		0
43	Five-Membered Fused N-Heterocycles. , 2020, , 86-125.		0
44	Five-Membered N-Polyheterocycles. , 2020, , 52-85.		0
45	Five-Membered N,N-Polyheterocycles. , 2020, , 208-242.		0
46	Ionic liquid assisted synthesis of six-membered oxygen heterocycles. SN Applied Sciences, 2019, 1, 1.	1.5	25
47	Applications of metal and non-metal catalysts for the synthesis of oxygen containing five-membered polyheterocylces: a mini review. SN Applied Sciences, 2019, 1, 1.	1.5	14
48	Cobalt-catalyzed C–N, C–O, C–S bond formation: synthesis of heterocycles. Journal of the Iranian Chemical Society, 2019, 16, 2525-2553.	1.2	46
49	Gold-catalyzed C–O bond forming reactions for the synthesis of six-membered O-heterocycles. SN Applied Sciences, 2019, 1, 1.	1.5	26
50	Photochemical reactions in five and six-membered polyheterocycles synthesis. Synthetic Communications, 2019, 49, 2281-2318.	1.1	54
51	Photochemical Synthesis of Fused Five-membered O-heterocycles. Current Green Chemistry, 2019, 6, 155-183.	0.7	17
52	Synthesis of five-membered $\langle i \rangle N \langle i \rangle$ -heterocycles using silver metal. Synthetic Communications, 2019, 49, 3058-3100.	1.1	40
53	Application of titanium catalysts for the syntheses of heterocycles. Synthetic Communications, 2019, 49, 1847-1894.	1.1	61
54	Nickel-catalyzed synthesis of five-membered heterocycles. Synthetic Communications, 2019, 49, 1543-1577.	1.1	46

#	Article	IF	CITATIONS
55	Synthesis of five-membered $\langle i > O < i > , \langle i > N < i > -heterocycles using metal and nonmetal. Synthetic Communications, 2019, 49, 1345-1384.$	1.1	35
56	Seven and higher-membered oxygen heterocycles: Metal and non-metal. Synthetic Communications, 2019, 49, 1508-1542.	1.1	14
57	Application of silver-promoted reactions in the synthesis of five-membered < i > $0 < i\rangle$ heterocycles. Synthetic Communications, 2019, 49, 743-789.	1.1	45
58	Synthesis of Six-Membered N-Heterocycles Using Ruthenium Catalysts. Catalysis Letters, 2019, 149, 1513-1559.	1.4	48
59	Synthesis of seven and higher-membered heterocycles using ruthenium catalysts. Synthetic Communications, 2019, 49, 617-661.	1.1	48
60	Nickel catalysis: six membered heterocycle syntheses. Synthetic Communications, 2019, 49, 1103-1133.	1.1	47
61	Seven-membered $\langle i \rangle N \langle i \rangle$ -heterocycles: metal and nonmetal assisted synthesis. Synthetic Communications, 2019, 49, 987-1030.	1.1	40
62	Gold and silver assisted synthesis of five-membered oxygen and nitrogen containing heterocycles. Synthetic Communications, 2019, 49, 1459-1485.	1.1	36
63	Synthetic routes to seven and higher membered <i>S</i> -heterocycles by use of metal and nonmetal catalyzed reactions. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 186-209.	0.8	39
64	Synthesis of Threeâ€Membered and Fourâ€Membered Heterocycles with the Assistance of Photochemical Reactions. Journal of Heterocyclic Chemistry, 2019, 56, 1141-1167.	1.4	47
65	Ionic liquid: An efficient and recyclable medium for the synthesis of fused six-membered oxygen heterocycles. Synthetic Communications, 2019, 49, 1679-1707.	1.1	46
66	Ionic liquid assisted synthesis of $\langle i \rangle S \langle i \rangle$ -heterocycles. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 165-185.	0.8	48
67	Withdrawal Notice: C-N Bond Forming Reactions for the Synthesis of Five-membered N-heterocycles using Copper Catalysis. Current Organocatalysis, 2019, 06, .	0.3	0
68	Applications of palladium dibenzylideneacetone as catalyst in the synthesis of five-membered $\langle i \rangle N \langle i \rangle$ -heterocycles. Synthetic Communications, 2019, 49, 1205-1230.	1.1	52
69	Ruthenium catalyzed synthesis of five-membered Oâ€'heterocycles. Inorganic Chemistry Communication, 2019, 99, 82-107.	1.8	38
70	Copper catalyzed synthesis of seven and higher membered heterocycles. Synthetic Communications, 2019, 49, 879-916.	1.1	43
71	Palladium acetate and phosphine assisted synthesis of five-membered <i>N </i> heterocycles. Synthetic Communications, 2019, 49, 483-514.	1.1	56
72	Multiple nitrogen-containing heterocycles: Metal and non-metal assisted synthesis. Synthetic Communications, 2019, 49, 1633-1658.	1.1	48

#	Article	IF	CITATIONS
73	lonic Liquids: A Versatile Medium for the Synthesis of Six-membered Two Nitrogen- Containing Heterocycles. Current Organic Chemistry, 2019, 23, 76-96.	0.9	24
74	Ionic Liquids for the Synthesis of Five-Membered N,N-, N,N,N- and N,N,N,NHeterocycles. Current Organic Chemistry, 2019, 23, 1214-1238.	0.9	44
75	A Review of Ruthenium-catalyzed C-N Bond Formation Reactions for the Synthesis of Five-membered N-heterocycles. Current Organic Chemistry, 2019, 23, 1901-1944.	0.9	37
76	Metal and Non-Metal Catalysts in the Synthesis of Five-Membered S-Heterocycles. Current Organic Synthesis, 2019, 16, 258-275.	0.7	29
77	Synthesis of Five-Membered Heterocycles Containing Nitrogen Heteroatom Under Ultrasonic Irradiation. Mini-Reviews in Organic Chemistry, 2019, 16, 481-503.	0.6	45
78	Six-Membered N-Heterocycles., 2019,, 227-269.		0
79	Five-Membered N-Polyheterocycles. , 2019, , 34-78.		0
80	Synthesis of six- and seven-membered heterocycles under ultrasound irradiation. Synthetic Communications, 2018, 48, 1235-1258.	1.1	69
81	Solid-phase synthesis of sulfur containing heterocycles. Journal of Sulfur Chemistry, 2018, 39, 544-577.	1.0	62
82	Perspectives of ionic liquids applications for the synthesis of five- and six-membered <i>O,N </i> -heterocycles. Synthetic Communications, 2018, 48, 473-495.	1.1	33
83	Metal- and nonmetal-catalyzed synthesis of five-membered S,N-heterocycles. Journal of Sulfur Chemistry, 2018, 39, 193-236.	1.0	18
84	Synthesis of six- and seven-membered and larger heterocylces using Au and Ag catalysts. Inorganic and Nano-Metal Chemistry, 2018, 48, 541-568.	0.9	46
85	Synthesis of seven and higher membered nitrogen containing heterocycles using photochemical irradiation. Synthetic Communications, 2018, 48, 2815-2849.	1.1	47
86	Photochemical irradiation: Seven and higher membered <i>O</i> heterocycles. Synthetic Communications, 2018, 48, 2935-2964.	1,1	50
87	Mercury-catalyzed synthesis of heterocycles. Synthetic Communications, 2018, 48, 2715-2749.	1.1	68
88	Photochemical reactions as key steps in five-membered <i>N-</i> heterocycle synthesis. Synthetic Communications, 2018, 48, 1259-1284.	1.1	59
89	Recent developments in the synthesis of nitrogen containing five-membered polyheterocycles using rhodium catalysts. Synthetic Communications, 2018, 48, 2457-2474.	1.1	56
90	Synthesis of Heterocycles Through Platinum-Catalyzed Reactions. Current Catalysis, 2018, 7, 3-25.	0.5	18

#	Article	IF	Citations
91	Photochemical mediated reactions in five-membered <i>O-</i> heterocycles synthesis. Synthetic Communications, 2018, 48, 2119-2149.	1.1	55
92	Ruthenium catalysis in six-membered $\langle i \rangle O \langle i \rangle$ -heterocycles synthesis. Synthetic Communications, 2018, 48, 1551-1587.	1.1	57
93	Green synthesis of three- to five-membered $\langle i \rangle O \langle i \rangle$ -heterocycles using ionic liquids. Synthetic Communications, 2018, 48, 1588-1613.	1.1	65
94	Ultrasound-assisted green synthesis of five-membered <i>O-</i> and <i>S-</i> heterocycles. Synthetic Communications, 2018, 48, 1715-1738.	1.1	75
95	Photochemical Reactions for the Synthesis of Six-Membered O-Heterocycles. Current Organic Synthesis, 2018, 15, 298-320.	0.7	37
96	Copper Catalysts in the Synthesis of Five-membered N-polyheterocycles. Current Organic Synthesis, 2018, 15, 940-971.	0.7	50
97	lonic Liquid Promoted Eco-friendly and Efficient Synthesis of Six-membered Npolyheterocycles. Current Organic Synthesis, 2018, 15, 1124-1146.	0.7	38
98	Ultrasound-Assisted Synthesis of Six-Membered N-Heterocycles. Mini-Reviews in Organic Chemistry, 2018, 15, 520-536.	0.6	50
99	Applications of gold catalysts for the synthesis of five-membered <i>O</i> heterocycles. Inorganic and Nano-Metal Chemistry, 2017, 47, 163-187.	0.9	50
100	Photochemical Reactions: Synthesis of Six-membered N-heterocycles. Current Organic Synthesis, 2017, 14, .	0.7	34
101	Methods for Metal and Non-Metal Catalyzed Synthesis of Six-Membered Oxygen Containing Poly-Heterocycles. Current Organic Synthesis, 2017, 14, 531-556.	0.7	46
102	lonic Liquids: Promising But Challenging Solvents for the Synthesis of NHeterocycles. Mini-Reviews in Organic Chemistry, 2017, 14, 3-23.	0.6	68
103	Gold Catalysts in the Synthesis of Five-membered N-heterocycles. Current Organocatalysis, 2017, 4, .	0.3	41
104	Expedient Protocols for the Installation of 1,5â€benzodiazepineâ€based Privileged Templates on 2â€position of α, βâ€enone Incorporated Derivatives of the 1,4â€benzodiazepine Nucleus Linked Through a Phenoxyl Spacer. Journal of Heterocyclic Chemistry, 2016, 53, 643-646.	1.4	16
105	A Facile Synthesis of Face "D―Quinolino Annulated Benzazepinone Analogues with Its Quinoline Framework Appended To Oxadiazole, Triazole and Pyrazole Heterocycles. Journal of Heterocyclic Chemistry, 2016, 53, 457-460.	1.4	16
106	Metal Catalysts for the Formation of Six-Membered <i>N</i> -Polyheterocycles. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 983-1020.	0.6	46
107	Synthetic and Biological Aspects of Thiadiazoles and their Condensed Derivatives: An Overview. Current Topics in Medicinal Chemistry, 2016, 16, 2884-2920.	1.0	26
108	Greener and Expeditious Synthesis of Fused Six-Membered <i>N,N</i> -Heterocycles Using Microwave Irradiation. Synthetic Communications, 2015, 45, 1493-1519.	1.1	53

#	Article	IF	CITATIONS
109	Microwave-Assisted Synthesis of Fused Polycyclic Six-Membered (i>N -Heterocycles. Synthetic Communications, 2015, 45, 273-299.	1.1	68
110	Microwave-Assisted Synthesis: Fused Five-Membered <i>N</i> -Heterocycles. Synthetic Communications, 2015, 45, 789-823.	1.1	93
111	Recent Impact of Microwave-Assisted Synthesis on Benzo Derivatives of Five-Membered <i>N</i> -Heterocycles. Synthetic Communications, 2015, 45, 539-568.	1.1	59
112	Palladium-Catalyzed Approach to the Synthesis of <i>S</i> -heterocycles. Catalysis Reviews - Science and Engineering, 2015, 57, 478-564.	5 . 7	52
113	Applications of Microwaves in the Synthesis of Polycyclic Six-Membered $\langle i \rangle N, N \langle i \rangle$ -Heterocycles. Synthetic Communications, 2015, 45, 1599-1631.	1.1	54
114	Palladium Catalysts: Synthesis of Five-Membered $\langle i \rangle N \langle i \rangle$ -Heterocycles Fused with Other Heterocycles. Catalysis Reviews - Science and Engineering, 2015, 57, 1-78.	5.7	88
115	Application of Microwave Irradiation in the Synthesis of Fused Six-Membered Heterocycles with $\langle i \rangle N \langle i \rangle$ -Heteroatom. Synthetic Communications, 2015, 45, 173-201.	1.1	53
116	Review of Microwave-Assisted Synthesis of Benzo-Fused Six-Membered <i>N,N</i> -Heterocycles. Synthetic Communications, 2015, 45, 300-330.	1.1	60
117	Benign Approaches for the Microwaveâ€assisted Synthesis of Fiveâ€membered 1,2â€ <i>N</i> , <i>N</i> ,6015, 52, 953-973.	1.4	79
118	Six-Membered $\langle i \rangle N \langle i \rangle$ -Heterocycles: Microwave-Assisted Synthesis. Synthetic Communications, 2015, 45, 1-34.	1.1	43
119	Polycyclic Six-Membered <i>N</i> -Heterocycles: Microwave-Assisted Synthesis. Synthetic Communications, 2015, 45, 35-69.	1.1	54
120	Role of Microwaves in the Synthesis of Fused Five-Membered Heterocycles with Three <i>N</i> -Heteroatoms. Synthetic Communications, 2015, 45, 403-431.	1.1	78
121	Review on the Synthesis of Six-Membered $\langle i \rangle N, N \langle i \rangle$ -Heterocycles by Microwave Irradiation. Synthetic Communications, 2015, 45, 1145-1182.	1.1	67
122	Synthesis of Fused Five-Membered <i>N,N</i> -Heterocycles Using Microwave Irradiation. Synthetic Communications, 2015, 45, 1379-1410.	1.1	48
123	Environmentally Benign Synthesis of Five-Membered 1,3- <i>N,N</i> -Heterocycles by Microwave Irradiation. Synthetic Communications, 2015, 45, 909-943.	1.1	83
124	Six-Membered Heterocycles with Three and Four <i>N</i> -Heteroatoms: Microwave-Assisted Synthesis. Synthetic Communications, 2015, 45, 151-172.	1.1	51
125	Metal catalysts: applications in higher-membered N-heterocycles synthesis. Journal of the Iranian Chemical Society, 2015, 12, 9-45.	1.2	79
126	Advances in Microwave-Assisted Synthesis for Five-Membered <i>N</i> -Heterocycle Synthesis. Synthetic Communications, 2015, 45, 432-457.	1.1	57

#	Article	IF	Citations
127	Insight into Microwave-Assisted Synthesis of Benzo Derivatives of Five-Membered <i>N,N</i> -Heterocycles. Synthetic Communications, 2015, 45, 1269-1300.	1.1	42
128	Synthesis of Five-Membered <i>N,N,N,V/i>- and <i>N,N,N,N,V/i>-Heterocyclic Compounds: Applications of Microwaves. Synthetic Communications, 2015, 45, 1711-1742.</i></i>	1.1	60
129	An Efficient One Pot Protocol to the Annulation of Face "d―of Benzazepinone Ring with Pyrazole, Isoxazole, and Pyrimidine Nucleus through the Corresponding Oxoketene Dithioacetal Derivative. Advances in Chemistry, 2014, 2014, 1-5.	1.1	13
130	Synthesis of 2-(oxadiazolo, pyrimido, imidazolo, and benzimidazolo) substituted analogues of 1,4-benzodiazepin-5-carboxamides linked through a phenoxyl bridge. Journal of Chemical Sciences, 2014, 126, 1861-1867.	0.7	16
131	Solid-Phase Synthetic Approach Toward the Synthesis of Oxygen-Containing Heterocycles. Synthetic Communications, 2014, 44, 1019-1042.	1.1	61
132	Synthetic Strategies Applicable in the Synthesis of Privileged Scaffold: 1,4-Benzodiazepine. Synthetic Communications, 2014, 44, 1375-1413.	1.1	76
133	A Novel Synthetic Protocol for the Heteroannulation of Oxocarbazole and Oxoazacarbazole Derivatives through Corresponding Oxoketene Dithioacetals. Journal of Heterocyclic Chemistry, 2014, 51, 18-23.	1.4	17
134	Microwave-assisted synthesis of five-membered S-heterocycles. Journal of the Iranian Chemical Society, 2014, 11, 523-564.	1.2	44
135	Microwave-Assisted Synthesis of Six-Membered <i>S</i> Heterocycles. Synthetic Communications, 2014, 44, 2615-2644.	1.1	47
136	Expedient Protocols for the Installation of 1,5â€Benzoazepinoâ€Based Privileged Templates on the 2â€Position of 1,4â€Benzodiazepine Through a Phenoxyl Spacer. Journal of Heterocyclic Chemistry, 2014, 51, E340.	1.4	22
137	Microwave-Assisted Synthesis of Five-Membered <i>O</i> -Heterocycles. Synthetic Communications, 2014, 44, 3483-3508.	1.1	51
138	Synthesis of Oxadiazolo-, Pyrimido-, Imidazolo-, and Benzimidazolo-Containing Derivatives of 1,4-Benzodiazepin-5-(4′-methylpiperazinyl)-carboxamide Through Phenylamino Spacer. Synthetic Communications, 2014, 44, 2789-2796.	1.1	18
139	Microwave-Assisted Synthesis of Five-Membered <i>O,N,N </i> -Heterocycles. Synthetic Communications, 2014, 44, 3229-3247.	1.1	46
140	Palladium-catalyzed approach to the synthesis of five-membered O-heterocycles. Inorganic Chemistry Communication, 2014, 49, 86-119.	1.8	82
141	Microwave-Assisted Synthesis of Seven- and Higher-Membered <i>O</i> -Heterocycles. Synthetic Communications, 2014, 44, 2739-2755.	1.1	46
142	Microwave-Assisted Synthesis of Seven- and Higher-Membered <i>N</i> -Heterocycles. Synthetic Communications, 2014, 44, 2577-2614.	1.1	48
143	Application of Dimethylaminomethylene Ketone in Heterocycles Synthesis: Synthesis of 2â€(Isoxazolo,) Tj ETQq1 Oxyphenyl Bridge. Journal of Heterocyclic Chemistry, 2014, 51, E50.	1 0.7843 1.4	14 rgBT /Ov 16
144	Microwave-Assisted Synthesis of Six-Membered <i>O</i> -Heterocycles. Synthetic Communications, 2014, 44, 3047-3081.	1.1	59

#	Article	IF	CITATION
145	Microwave-Assisted Synthesis of Six-Membered <i>O,O</i> -Heterocycles. Synthetic Communications, 2014, 44, 3082-3111.	1.1	48
146	Microwave-Assisted Synthesis of Five-Membered <i>O,N</i> -Heterocycles. Synthetic Communications, 2014, 44, 3509-3537.	1.1	45
147	Microwave-Assisted Synthesis of Seven-Membered <i>S</i> -Heterocycles. Synthetic Communications, 2014, 44, 3201-3228.	1.1	49
148	Solid-Phase Synthesis of Nitrogen-Containing Five-Membered Heterocycles. Synthetic Communications, 2014, 44, 1671-1729.	1.1	35
149	Peroxy Acids: Role in Organic Synthesis. Synthetic Communications, 2014, 44, 721-747.	1.1	36
150	Nitrogen-Containing Six-Membered Heterocycles: Solid-Phase Synthesis. Synthetic Communications, 2014, 44, 1173-1211.	1.1	63
151	An insight into hexamethylenetetramine: a versatile reagent in organic synthesis. Journal of the Iranian Chemical Society, 2013, 10, 1193-1228.	1.2	28
152	Application of chalcones in heterocycles synthesis: Synthesis of 2-(isoxazolo, pyrazolo and pyrimido) substituted analogues of 1,4-benzodiazepin-5-carboxamides linked through an oxyphenyl bridge. Journal of Chemical Sciences, 2013, 125, 555-560.	0.7	46
153	Noteworthy Mechanistic Precedence in the Exclusive Formation of One Regioisomer in the Beckmann Rearrangement of Ketoximes of 4-Piperidones Annulated to Pyrazolo-indole Nucleus by Organocatalyst Derived from TCT and DMF. Synthetic Communications, 2013, 43, 16-25.	1.1	25
154	Metal and Non-metal Based Catalysts for Oxidation of Organic Compounds. Catalysis Surveys From Asia, 2013, 17, 20-42.	1.0	19
155	An Expedient Protocol to the Synthesis of Benzo(b)furans by Palladium Induced Heterocyclization of Corresponding 2-Allylphenols Containing Electron Rich and Electron Capturing Substituents in the	0.9	13