
Xinyue Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/161615/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A record thermoelectric efficiency in tellurium-free modules for low-grade waste heat recovery. Nature Communications, 2022, 13, 237.	5.8	99
2	Fully Bio-Based High-Performance Thermosets with Closed-Loop Recyclability. ACS Sustainable Chemistry and Engineering, 2022, 10, 1036-1046.	3.2	42
3	Bioreducible, arginine-rich polydisulfide-based siRNA nanocomplexes with excellent tumor penetration for efficient gene silencing. Biomaterials Science, 2021, 9, 5275-5292.	2.6	10
4	Realizing a 14% single-leg thermoelectric efficiency in GeTe alloys. Science Advances, 2021, 7, .	4.7	91
5	Leveraging bipolar effect to enhance transverse thermoelectricity in semimetal Mg2Pb for cryogenic heat pumping. Nature Communications, 2021, 12, 3837.	5.8	24
6	Thermoelectric Transport Properties of TmAg Cu1-Te2 solid solutions. Journal of Materiomics, 2021, 7, 886-893.	2.8	3
7	Giant Polymer Vesicles with a Latticelike Membrane. ACS Macro Letters, 2021, 10, 1015-1022.	2.3	16
8	An over 10% module efficiency obtained using non-Bi ₂ Te ₃ thermoelectric materials for recovering heat of <600 K. Energy and Environmental Science, 2021, 14, 6506-6513.	15.6	66
9	Polymersome Wound Dressing Spray Capable of Bacterial Inhibition and H ₂ S Generation for Complete Diabetic Wound Healing. Chemistry of Materials, 2021, 33, 7972-7985.	3.2	43
10	Near-room-temperature rhombohedral Ge1-Pb Te thermoelectrics. Materials Today Physics, 2020, 15, 100260.	2.9	20
11	Electronic quality factor for thermoelectrics. Science Advances, 2020, 6, .	4.7	88
12	Acquired reactive perforating collagenosis. Medicine (United States), 2020, 99, e20391.	0.4	5
13	Evaluation of Thermoelectric Properties of Ag _{0.366} Sb _{0.558} Te. Annalen Der Physik, 2020, 532, 1900561.	0.9	5
14	Thermoelectric properties of Cu4Ge3Se5 with an intrinsic disordered zinc blende structure. Journal of Materials Chemistry A, 2020, 8, 3431-3437.	5.2	9
15	GeTe Thermoelectrics. Joule, 2020, 4, 986-1003.	11.7	215
16	Manipulation of Band Degeneracy and Lattice Strain for Extraordinary PbTe Thermoelectrics. Research, 2020, 2020, 8151059.	2.8	23
17	Promising cubic MnGeTe2 thermoelectrics. Science China Materials, 2019, 62, 379-388.	3.5	16
18	Band and Phonon Engineering for Thermoelectric Enhancements of Rhombohedral GeTe. ACS Applied Materials & Interfaces, 2019, 11, 30756-30762.	4.0	37

XINYUE ZHANG

#	Article	IF	CITATIONS
19	Extraordinary nâ€Type Mg ₃ SbBi Thermoelectrics Enabled by Yttrium Doping. Advanced Materials, 2019, 31, e1903387.	11.1	120
20	Efficient Sc-Doped Mg _{3.05–<i>x</i>} Sc <i>_x</i> SbBi Thermoelectrics Near Room Temperature. Chemistry of Materials, 2019, 31, 8987-8994.	3.2	55
21	Ring-Opening Polymerization of <i>N</i> -Carboxyanhydride-Induced Self-Assembly for Fabricating Biodegradable Polymer Vesicles. ACS Macro Letters, 2019, 8, 1216-1221.	2.3	90
22	Lattice Strain Advances Thermoelectrics. Joule, 2019, 3, 1276-1288.	11.7	333
23	Manipulation of Phonon Transport in Thermoelectrics. Advanced Materials, 2018, 30, e1705617.	11.1	316
24	Low-Symmetry Rhombohedral GeTe Thermoelectrics. Joule, 2018, 2, 976-987.	11.7	402
25	Vacancy Manipulation for Thermoelectric Enhancements in GeTe Alloys. Journal of the American Chemical Society, 2018, 140, 15883-15888.	6.6	182
26	Rationalizing phonon dispersion for lattice thermal conductivity of solids. National Science Review, 2018, 5, 888-894.	4.6	129
27	High-Performance GeTe Thermoelectrics in Both Rhombohedral and Cubic Phases. Journal of the American Chemical Society, 2018, 140, 16190-16197.	6.6	108
28	Manipulation of Solubility and Interstitial Defects for Improving Thermoelectric SnTe Alloys. ACS Energy Letters, 2018, 3, 1969-1974.	8.8	69
29	Electronic origin of the high thermoelectric performance of GeTe among the p-type group IV monotellurides. NPG Asia Materials, 2017, 9, e353-e353.	3.8	223
30	Promoting SnTe as an Ecoâ€Friendly Solution for pâ€PbTe Thermoelectric via Band Convergence and Interstitial Defects. Advanced Materials, 2017, 29, 1605887.	11.1	317
31	Substitutional defects enhancing thermoelectric CuGaTe ₂ . Journal of Materials Chemistry A, 2017, 5, 5314-5320.	5.2	87
32	Sb induces both doping and precipitation for improving the thermoelectric performance of elemental Te. Inorganic Chemistry Frontiers, 2017, 4, 1066-1072.	3.0	45
33	Realizing the High Thermoelectric Performance of GeTe by Sb-Doping and Se-Alloying. Chemistry of Materials, 2017, 29, 605-611.	3.2	226
34	Simultaneous Optimization of Carrier Concentration and Alloy Scattering for Ultrahigh Performance GeTe Thermoelectrics. Advanced Science, 2017, 4, 1700341.	5.6	151
35	Promising Thermoelectric Ag _{5â[~]δ} Te ₃ with Intrinsic Low Lattice Thermal Conductivity. ACS Energy Letters, 2017, 2, 2470-2477.	8.8	54
36	Thermoelectric Properties of SnS with Na-Doping. ACS Applied Materials & Interfaces, 2017, 9, 34033-34041.	4.0	118

XINYUE ZHANG

#	Article	IF	CITATIONS
37	Advances in Environment-Friendly SnTe Thermoelectrics. ACS Energy Letters, 2017, 2, 2349-2355.	8.8	109
38	Single parabolic band transport in p-type EuZn ₂ Sb ₂ thermoelectrics. Journal of Materials Chemistry A, 2017, 5, 24185-24192.	5.2	38
39	Manipulation of charge transport in thermoelectrics. Npj Quantum Materials, 2017, 2, .	1.8	55
40	Vacancy scattering for enhancing the thermoelectric performance of CuGaTe ₂ solid solutions. Journal of Materials Chemistry A, 2016, 4, 15464-15470.	5.2	106
41	Thermoelectric Properties of Cu ₂ SnSe ₄ with Intrinsic Vacancy. Chemistry of Materials, 2016, 28, 6227-6232.	3.2	115