
Jean Kaoru Millet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1616093/publications.pdf Version: 2024-02-01

IEAN KAODU MULET

#	Article	IF	CITATIONS
1	Mechanisms of Coronavirus Cell Entry Mediated by the Viral Spike Protein. Viruses, 2012, 4, 1011-1033.	1.5	1,086
2	Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus Research, 2015, 202, 120-134.	1.1	752
3	Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15214-15219.	3.3	576
4	Phylogenetic Analysis and Structural Modeling of SARS-CoV-2 Spike Protein Reveals an Evolutionary Distinct and Proteolytically Sensitive Activation Loop. Journal of Molecular Biology, 2020, 432, 3309-3325.	2.0	406
5	Proteolytic Cleavage of the SARS-CoV-2 Spike Protein and the Role of the Novel S1/S2 Site. IScience, 2020, 23, 101212.	1.9	277
6	Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells. Virology, 2018, 517, 3-8.	1.1	251
7	The SARS-CoV Fusion Peptide Forms an Extended Bipartite Fusion Platform that Perturbs Membrane Order in a Calcium-Dependent Manner. Journal of Molecular Biology, 2017, 429, 3875-3892.	2.0	170
8	Mutation in Spike Protein Cleavage Site and Pathogenesis of Feline Coronavirus. Emerging Infectious Diseases, 2013, 19, 1066-1073.	2.0	146
9	A Human Coronavirus Responsible for the Common Cold Massively Kills Dendritic Cells but Not Monocytes. Journal of Virology, 2012, 86, 7577-7587.	1.5	117
10	Middle East respiratory syndrome coronavirus infection is inhibited by griffithsin. Antiviral Research, 2016, 133, 1-8.	1.9	117
11	Dual inhibitory effects of APOBEC family proteins on retrotransposition of mammalian endogenous retroviruses. Nucleic Acids Research, 2006, 34, 1522-1531.	6.5	111
12	A Tale of Two Viruses: The Distinct Spike Glycoproteins of Feline Coronaviruses. Viruses, 2020, 12, 83.	1.5	106
13	Coronaviruses in cats and other companion animals: Where does SARS-CoV-2/COVID-19 fit?. Veterinary Microbiology, 2020, 247, 108777.	0.8	88
14	Murine Leukemia Virus (MLV)-based Coronavirus Spike-pseudotyped Particle Production and Infection. Bio-protocol, 2016, 6, .	0.2	87
15	Structure-Function Studies Link Class II Viral Fusogens with the Ancestral Gamete Fusion Protein HAP2. Current Biology, 2017, 27, 651-660.	1.8	78
16	Molecular diversity of coronavirus host cell entry receptors. FEMS Microbiology Reviews, 2021, 45, .	3.9	75
17	Calcium Ions Directly Interact with the Ebola Virus Fusion Peptide To Promote Structure–Function Changes That Enhance Infection. ACS Infectious Diseases, 2020, 6, 250-260.	1.8	72
18	Production of Pseudotyped Particles to Study Highly Pathogenic Coronaviruses in a Biosafety Level 2 Setting. Journal of Visualized Experiments, 2019, , .	0.2	64

Jean Kaoru Millet

#	Article	IF	CITATIONS
19	Single particle assay of coronavirus membrane fusion with proteinaceous receptor-embedded supported bilayers. Biomaterials, 2013, 34, 7895-7904.	5.7	63
20	Coronavirus entry: how we arrived at SARS-CoV-2. Current Opinion in Virology, 2021, 47, 113-120.	2.6	51
21	Ezrin Interacts with the SARS Coronavirus Spike Protein and Restrains Infection at the Entry Stage. PLoS ONE, 2012, 7, e49566.	1.1	46
22	Membrane Fusion-Competent Virus-Like Proteoliposomes and Proteinaceous Supported Bilayers Made Directly from Cell Plasma Membranes. Langmuir, 2013, 29, 6409-6419.	1.6	42
23	Characterization of a recombinant canine coronavirus with a distinct receptor-binding (S1) domain. Virology, 2012, 430, 90-99.	1.1	37
24	Improving Virus Taxonomy by Recontextualizing Sequence-Based Classification with Biologically Relevant Data: the Case of the <i>Alphacoronavirus 1</i> Species. MSphere, 2018, 3, .	1.3	25
25	A Fluorogenic Peptide Cleavage Assay to Screen for Proteolytic Activity: Applications for coronavirus spike protein activation. Journal of Visualized Experiments, 2019, , .	0.2	23
26	A camel-derived MERS-CoV with a variant spike protein cleavage site and distinct fusion activation properties. Emerging Microbes and Infections, 2016, 5, 1-9.	3.0	21
27	Furin cleavage sites in the spike proteins of bat and rodent coronaviruses: Implications for virus evolution and zoonotic transfer from rodent species. One Health, 2021, 13, 100282.	1.5	19
28	Viral fusion efficacy of specific H3N2 influenza virus reassortant combinations at single-particle level. Scientific Reports, 2016, 6, 35537.	1.6	18
29	Coronaviruses Associated with the Superfamily <i>Musteloidea</i> . MBio, 2021, 12, .	1.8	17
30	Recent Zoonotic Spillover and Tropism Shift of a Canine Coronavirus Is Associated with Relaxed Selection and Putative Loss of Function in NTD Subdomain of Spike Protein. Viruses, 2022, 14, 853.	1.5	11
31	Biochemical Characterization of Middle East Respiratory Syndrome Coronavirus Spike Protein Proteolytic Processing. Methods in Molecular Biology, 2020, 2099, 21-37.	0.4	10
32	Investigation of the Functional Roles of Host Cell Proteins Involved in Coronavirus Infection Using Highly Specific and Scalable RNA Interference (RNAi) Approach. Methods in Molecular Biology, 2015, 1282, 231-240.	0.4	7
33	Viral and Host Attributes Underlying the Origins of Zoonotic Coronaviruses in Bats. Comparative Medicine, 2021, 71, 442-450.	0.4	6
34	The C-Terminal Domain of Salmonid Alphavirus Nonstructural Protein 2 (nsP2) Is Essential and Sufficient To Block RIG-I Pathway Induction and Interferon-Mediated Antiviral Response. Journal of Virology, 2021, 95, e0115521.	1.5	2
35	Deciphering the Fine-Tuning of the Retinoic Acid-Inducible Gene-I Pathway in Teleost Fish and Beyond. Frontiers in Immunology, 2021, 12, 679242.	2.2	1
36	Using Single-Virion Fusion Assay to Study Hemifusion Kinectics of Influenza a Viruses and Influenza Pseudotypes. Biophysical Journal, 2016, 110, 250a.	0.2	0