List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1615733/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Achiral Lanthanide Alkyl Complexes Bearing N,O Multidentate Ligands. Synthesis and Catalysis of Highly Heteroselective Ring-Opening Polymerization ofrac-Lactide. Organometallics, 2007, 26, 2747-2757.	1.1	278
2	Highly <i>cis</i> -1,4 Selective Polymerization of Dienes with Homogeneous Zieglerâ^Natta Catalysts Based on NCN-Pincer Rare Earth Metal Dichloride Precursors. Journal of the American Chemical Society, 2008, 130, 4984-4991.	6.6	225
3	Highly 3,4-Selective Living Polymerization of Isoprene with Rare Earth Metal Fluorenyl N-Heterocyclic Carbene Precursors. Macromolecules, 2008, 41, 1983-1988.	2.2	182
4	Polymerization ofrac-Lactide Using Schiff Base Aluminum Catalysts:Â Structure, Activity, and Stereoselectivity. Macromolecules, 2007, 40, 1904-1913.	2.2	174
5	Alternating Copolymerization of Cyclohexene Oxide and Carbon Dioxide Catalyzed by Organo Rare Earth Metal Complexes. Macromolecules, 2005, 38, 4089-4095.	2.2	146
6	An NCN-pincer ligand dysprosium single-ion magnet showing magnetic relaxation via the second excited state. Scientific Reports, 2014, 4, 5471.	1.6	138
7	Synthesis of the First Rare Earth Metal Bis(alkyl)s Bearing an Indenyl Functionalized N-Heterocyclic Carbene. Organometallics, 2007, 26, 3167-3172.	1.1	133
8	Highly Isoselective Coordination Polymerization of <i>ortho</i> â€Methoxystyrene with βâ€Diketiminato Rareâ€Earthâ€Metal Precursors. Angewandte Chemie - International Edition, 2015, 54, 5205-5209.	7.2	131
9	Lanthanide-Imido Complexes and Their Reactions with Benzonitrile. Angewandte Chemie - International Edition, 2005, 44, 959-962.	7.2	129
10	β-Diketiminato Rare-Earth Metal Complexes. Structures, Catalysis, and Active Species for Highly <i>cis</i> -1,4-Selective Polymerization of Isoprene. Organometallics, 2010, 29, 2186-2193.	1.1	127
11	Highly Cis-1,4-Selective Living Polymerization of 1,3-Conjugated Dienes and Copolymerization with Îμ-Caprolactone by Bis(phosphino)carbazolide Rare-Earth-Metal Complexes. Organometallics, 2011, 30, 760-767.	1.1	126
12	Polymerization of 1,3-Conjugated Dienes with Rare-Earth Metal Precursors. Structure and Bonding, 2010, , 49-108.	1.0	125
13	Tetranuclear Rare Earth Metal Polyhydrido Complexes Composed of "(C5Me4SiMe3)LnH2―Units. Unique Reactivities toward Unsaturated Câ^'C, Câ^'N, and Câ^'O Bonds. Journal of the American Chemical Society, 2004, 126, 1312-1313.	6.6	123
14	Living catalyzed-chain-growth polymerization and block copolymerization of isoprene by rare-earth metal allyl precursors bearing a constrained-geometry-conformation ligand. Chemical Communications, 2010, 46, 3022.	2.2	103
15	Isoselective ring-opening polymerization of rac-lactide initiated by achiral heteroscorpionate zwitterionic zinc complexes. Chemical Communications, 2014, 50, 11411.	2.2	103
16	Pyrrolide-Supported Lanthanide Alkyl Complexes. Influence of Ligands on Molecular Structure and Catalytic Activity toward Isoprene Polymerization. Organometallics, 2007, 26, 4575-4584.	1.1	102
17	Ligands Dominate Highly Syndioselective Polymerization of Styrene by Using Constrained-geometry-configuration Rare-earth Metal Precursors. Macromolecules, 2012, 45, 1248-1253.	2.2	98
18	Magnesium and Zinc Complexes Supported by <i>N</i> , <i>O</i> -Bidentate Pyridyl Functionalized Alkoxy Ligands: Synthesis and Immortal ROP of ε-CL and <scp>l</scp> -LA. Organometallics, 2012, 31, 4182-4190.	1.1	98

#	Article	IF	CITATIONS
19	CCC-Pincer Bis(carbene) Lanthanide Dibromides. Catalysis on Highly <i>cis</i> -1,4-Selective Polymerization of Isoprene and Active Species. Organometallics, 2010, 29, 2987-2993.	1.1	95
20	Highly 3,4-Selective Polymerization of Isoprene with NPN Ligand Stabilized Rare-Earth Metal Bis(alkyl)s. Structures and Performances. Organometallics, 2009, 28, 4814-4822.	1.1	94
21	Stereoselective Copolymerization of Unprotected Polar and Nonpolar Styrenes by an Yttrium Precursor: Control of Polarâ€Group Distribution and Mechanism. Angewandte Chemie - International Edition, 2017, 56, 2714-2719.	7.2	93
22	New Rare Earth Metal Bis(alkyl)s Bearing an Iminophosphonamido Ligand. Synthesis and Catalysis toward Highly 3,4-Selective Polymerization of Isoprene. Organometallics, 2008, 27, 718-725.	1.1	92
23	Development of Group 3 Catalysts for Alternating Copolymerization of Ethylene and Styrene Derivatives. ACS Catalysis, 2018, 8, 6086-6093.	5.5	89
24	Facile Synthesis of Hydroxyl-Ended, Highly Stereoregular, Star-Shaped Poly(lactide) from Immortal ROP of <i>rac</i> -Lactide and Kinetics Study. Macromolecules, 2010, 43, 6678-6684.	2.2	84
25	A Lutetium Allyl Complex That Bears a Pyridylâ€Functionalized Cyclopentadienyl Ligand: Dual Catalysis on Highly Syndiospecific and <i>cis</i> â€1,4â€Selective (Co)Polymerizations of Styrene and Butadiene. Chemistry - A European Journal, 2010, 16, 14007-14015.	1.7	80
26	Phosphinimino-amino Magnesium Complexes: Synthesis and Catalysis of Heteroselective ROP of <i>rac</i> -Lactide. Organometallics, 2014, 33, 722-730.	1.1	79
27	Syndioselective coordination polymerization of unmasked polar methoxystyrenes using a pyridenylmethylene fluorenyl yttrium precursor. Chemical Communications, 2015, 51, 4685-4688.	2.2	78
28	Bis(imino)aryl NCN Pincer Aluminum and Zinc Complexes: Synthesis, Characterization, and Catalysis on <scp>l</scp> -Lactide Polymerization. Organometallics, 2010, 29, 5783-5790.	1.1	77
29	Isoselective 3,4-(co)polymerization of bio-renewable myrcene using NSN-ligated rare-earth metal precursor: an approach to a new elastomer. Chemical Communications, 2015, 51, 1039-1041.	2.2	77
30	Yttrium bis(alkyl) and bis(amido) complexes bearing N,O multidentate ligands. Synthesis and catalytic activity towards ringâ€opening polymerization of <scp>L</scp> â€lactide. Journal of Polymer Science Part A, 2007, 45, 5662-5672.	2.5	75
31	Ligand-Free Magnesium Catalyst System: Immortal Polymerization of <scp>l</scp> -Lactide with High Catalyst Efficiency and Structure of Active Intermediates. Macromolecules, 2012, 45, 6957-6965.	2.2	75
32	Rare-Earth-Metal Complexes Bearing Phosphazene Ancillary Ligands: Structures and Catalysis toward Highly Trans-1,4-Selective (Co)Polymerizations of Conjugated Dienes. Organometallics, 2013, 32, 1166-1175.	1.1	74
33	Reduction-sensitive core-cross-linked mPEG–poly(ester-carbonate) micelles for glutathione-triggered intracellular drug release. Polymer Chemistry, 2012, 3, 2403.	1.9	71
34	Protic compound mediated living cross-chain-transfer polymerization of rac-lactide: synthesis of isotactic (crystalline)–heterotactic (amorphous) stereomultiblock polylactide. Chemical Communications, 2012, 48, 6375.	2.2	71
35	Precisely Controlled Polymerization of Styrene and Conjugated Dienes by Group 3 Single‧ite Catalysts. ChemCatChem, 2018, 10, 42-61	1.8	71
36	3,4-Polymerization of Isoprene by Using NSN- and NPN-Ligated Rare Earth Metal Precursors: Switching of Stereo Selectivity and Mechanism. Macromolecules, 2014, 47, 4971-4978.	2.2	70

#	Article	IF	CITATIONS
37	Alternating copolymerization of cyclohexene oxide and carbon dioxide catalyzed by noncyclopentadienyl rareâ€earth metal bis(alkyl) complexes. Journal of Polymer Science Part A, 2008, 46, 6810-6818.	2.5	69
38	lsoprene polymerization with aminopyridinato ligand supported rare-earth metal complexes. Switching of the regio- and stereoselectivity. Chemical Communications, 2010, 46, 6150.	2.2	69
39	Statistically Syndioselective Coordination (Co)polymerization of 4-Methylthiostyrene. Macromolecules, 2016, 49, 781-787.	2.2	68
40	Binuclear Rare-Earth-Metal Alkyl Complexes Ligated by Phenylene-Bridged β-Diketiminate Ligands: Synthesis, Characterization, and Catalysis toward Isoprene Polymerization. Organometallics, 2013, 32, 3203-3209.	1.1	66
41	Rareâ€Earthâ€Metal–Hydrocarbyl Complexes Bearing Linked Cyclopentadienyl or Fluorenyl Ligands: Synthesis, Catalyzed Styrene Polymerization, and Structure–Reactivity Relationship. Chemistry - A European Journal, 2012, 18, 2674-2684.	1.7	64
42	Copolymerization of ε-Caprolactone and <scp>l</scp> -Lactide Catalyzed by Multinuclear Aluminum Complexes: An Immortal Approach. Organometallics, 2014, 33, 6474-6480.	1.1	63
43	Isoprene polymerization with indolideâ€imine supported rareâ€earth metal alkyl and amidinate complexes. Journal of Polymer Science Part A, 2008, 46, 5251-5262.	2.5	62
44	A New Strategy To Access Polymers with Aggregation-Induced Emission Characteristics. Macromolecules, 2014, 47, 5586-5594.	2.2	62
45	Thiophene-NPN Ligand Supported Rare-Earth Metal Bis(alkyl) Complexes. Synthesis and Catalysis toward Highly trans-1,4 Selective Polymerization of Butadiene. Organometallics, 2008, 27, 6531-6538.	1.1	60
46	Mechanism and Effect of Polar Styrenes on Scandiumâ€Catalyzed Copolymerization with Ethylene. Angewandte Chemie - International Edition, 2018, 57, 14896-14901.	7.2	60
47	NNN-Tridentate Pyrrolyl Rare-Earth Metal Complexes: Structure and Catalysis on Specific Selective Living Polymerization of Isoprene. Organometallics, 2012, 31, 6014-6021.	1.1	59
48	Tridentate CCC-Pincer Bis(carbene)-Ligated Rare-Earth Metal Dibromides. Synthesis and Characterization. Organometallics, 2008, 27, 5438-5440.	1.1	58
49	Efficient and Heteroselective Heteroscorpionate Rare-Earth-Metal Zwitterionic Initiators for ROP of <i>rac</i> -Lactide: Role of σ-Ligand. Macromolecules, 2014, 47, 2233-2241.	2.2	57
50	Heteroscorpionate Rareâ€Earth Metal Zwitterionic Complexes: Syntheses, Characterization, and Heteroselective Catalysis on the Ringâ€Opening Polymerization of <i>rac</i> â€Lactide. Chemistry - A European Journal, 2011, 17, 11520-11526.	1.7	56
51	Nature of the Entire Range of Rare Earth Metal-Based Cationic Catalysts for Highly Active and Syndioselective Styrene Polymerization. ACS Catalysis, 2016, 6, 176-185.	5.5	56
52	Facile Preparation of a Scandium Terminal Imido Complex Supported by a Phosphazene Ligand. Organometallics, 2013, 32, 5523-5529.	1.1	55
53	Mechanism and Effect of Polar Styrenes on Scandiumâ€Catalyzed Copolymerization with Ethylene. Angewandte Chemie, 2018, 130, 15112-15117.	1.6	55
54	Highly trans-1,4 selective (co-)polymerization of butadiene and isoprene with quinolyl anilido rare earth metal bis(alkyl) precursors. Dalton Transactions, 2011, 40, 7755.	1.6	54

#	Article	IF	CITATIONS
55	Highly 3,4-Selective Living Polymerization of Isoprene and Copolymerization with ε-Caprolactone by an Amidino N-Heterocyclic Carbene Ligated Lutetium Bis(alkyl) Complex. Organometallics, 2014, 33, 684-691.	1.1	53
56	Highly cis-1,4-selective coordination polymerization of polar 2-(4-methoxyphenyl)-1,3-butadiene and copolymerization with isoprene using a l²-diketiminato yttrium bis(alkyl) complex. Polymer Chemistry, 2016, 7, 1264-1270.	1.9	53
57	Highly Regio- and Stereoselective Terpolymerization of Styrene, Isoprene and Butadiene with Lutetium-Based Coordination Catalyst. Macromolecules, 2011, 44, 7675-7681.	2.2	51
58	Regioselective Chain Shuttling Polymerization of Isoprene: An Approach To Access New Materials from Single Monomer. Macromolecules, 2016, 49, 6226-6231.	2.2	51
59	Copolymerization of ethylene with norbornene catalyzed by cationic rare earth metal fluorenyl functionalized N-heterocyclic carbene complexes. Dalton Transactions, 2009, , 8963.	1.6	48
60	Synthesis and Characterization of Heteroscorpionate Rareâ€Earth Metal Dialkyl Complexes and Catalysis on MMA Polymerization. European Journal of Inorganic Chemistry, 2010, 2010, 2861-2866.	1.0	48
61	Stereo-selectivity switchable ROP of <i>rac</i> -î²-butyrolactone initiated by salan-ligated rare-earth metal amide complexes: the key role of the substituents on ligand frameworks. Chemical Communications, 2018, 54, 11998-12001.	2.2	46
62	Stereoselective Polymerization of Styrene with Cationic Scandium Precursors Bearing Quinolyl Aniline Ligands. Organometallics, 2010, 29, 1916-1923.	1.1	43
63	Unprecedented 3,4-Isoprene and <i>cis</i> -1,4-Butadiene Copolymers with Controlled Sequence Distribution by Single Yttrium Cationic Species. Macromolecules, 2014, 47, 8524-8530.	2.2	43
64	Rapid Syndiospecific (Co)Polymerization of Fluorostyrene with High Monomer Conversion. Chemistry - A European Journal, 2017, 23, 18151-18155.	1.7	43
65	Aluminum Schiff base catalysts derived from \hat{l}^2 -diketone for the stereoselective polymerization of racemic lactides. Journal of Polymer Science Part A, 2005, 43, 6605-6612.	2.5	42
66	Lanthanide Complexes Coordinated by a Dianionic Bis(amidinate) Ligand with a Rigid Naphthalene Linker. European Journal of Inorganic Chemistry, 2010, 2010, 3290-3298.	1.0	42
67	Self-Activated Coordination Polymerization of Alkoxystyrenes by a Yttrium Precursor: Stereocontrol and Mechanism. ACS Catalysis, 2019, 9, 2618-2625.	5.5	40
68	Copolymerization of Ethylene with 1-Hexene and 1-Octene Catalyzed by Fluorenyl N-Heterocyclic Carbene Ligated Rare-Earth Metal Precursors. Organometallics, 2013, 32, 2204-2209.	1.1	39
69	<i>cis</i> â€1,4â€6elective Copolymerization of Ethylene and Butadiene: A Compromise between Two Mechanisms. Angewandte Chemie - International Edition, 2017, 56, 6975-6979.	7.2	39
70	Isoprene Polymerization with Iminophosphonamide Rare-Earth-Metal Alkyl Complexes: Influence of Metal Size on the Regio- and Stereoselectivity. Organometallics, 2015, 34, 4063-4068.	1.1	38
71	The behavior of pyrrolyl ligands within the rare-earth metal alkyl complexes. Insertion of Cî€N and Cî€O double bonds into Ln–lf-C bonds. Dalton Transactions, 2010, 39, 3959.	1.6	37
72	Synthesis and Stereospecific Polymerization of a Novel Bulky Styrene Derivative. Macromolecules, 2016, 49, 2502-2510.	2.2	36

#	Article	IF	CITATIONS
73	Highly <i>Cis</i> -1,4-Selective Living Polymerization of 3-Methylenehepta-1,6-diene and Its Subsequent Thiol–Ene Reaction: An Efficient Approach to Functionalized Diene-Based Elastomer. Macromolecules, 2016, 49, 1242-1251.	2.2	36
74	Lutetiumâ€Methanediideâ€Alkyl Complexes: Synthesis and Chemistry. Chemistry - A European Journal, 2014, 20, 15493-15498.	1.7	35
75	Stereo- and Temporally Controlled Coordination Polymerization Triggered by Alternating Addition of a Lewis Acid and Base. Angewandte Chemie - International Edition, 2016, 55, 11975-11978.	7.2	35
76	Sequence and Regularity Controlled Coordination Copolymerization of Butadiene and Styrene: Strategy and Mechanism. Macromolecules, 2017, 50, 849-856.	2.2	35
77	Stereoselective Copolymerization of Unprotected Polar and Nonpolar Styrenes by an Yttrium Precursor: Control of Polarâ€Group Distribution and Mechanism. Angewandte Chemie, 2017, 129, 2758-2763.	1.6	34
78	Soluble poly(4-fluorostyrene): a high-performance dielectric electret for organic transistors and memories. Materials Horizons, 2020, 7, 1861-1871.	6.4	32
79	Facile synthesis of pendant- and α,ï‰-chain-end-functionalized polycarbonates via immortal polymerization by using a salan lutetium alkyl precursor. Chemical Communications, 2012, 48, 4588.	2.2	31
80	Dialkyl Rare Earth Complexes Supported by Potentially Tridentate Amidinate Ligands: Synthesis, Structures, and Catalytic Activity in Isoprene Polymerization. European Journal of Inorganic Chemistry, 2012, 2012, 2289-2297.	1.0	31
81	Synthesis of Isotactic–Heterotactic Stereoblock (Hard–Soft) Poly(lactide) with Tacticity Control through Immortal Coordination Polymerization. Chemistry - an Asian Journal, 2012, 7, 2403-2410.	1.7	31
82	Synthesis and AIE properties of PEG–PLA–PMPC based triblock amphiphilic biodegradable polymers. Polymer Chemistry, 2016, 7, 1121-1128.	1.9	31
83	Scandium alkyl complex with phosphinimino-amine ligand: Synthesis, structure and catalysis on ethylene polymerization. Dalton Transactions, 2011, 40, 2151-2153.	1.6	29
84	Stepâ€Growth Coordination Polymerization of 5â€Hydroxymethyl Furfural with Dihydrosilanes: Synergistic Catalysis Using Heteroscopionate Zinc Hydride and B(C ₆ F ₅) ₃ . Angewandte Chemie - International Edition, 2019, 58, 11434-11438.	7.2	28
85	Polarâ€Group Activated Isospecific Coordination Polymerization of ortho â€Methoxystyrene: Effects of Central Metals and Ligands. Chemistry - A European Journal, 2019, 25, 2043-2050.	1.7	28
86	Synthesis of Heterocyclic-Fused Cyclopentadienyl Scandium Complexes and the Catalysis for Copolymerization of Ethylene and Dicyclopentadiene. Organometallics, 2015, 34, 455-461.	1.1	27
87	Synthesis and Characterization of Crystalline Styreneâ€ <i>b</i> â€(Ethyleneâ€ <i>co</i> â€Butylene)â€ <i>b</i> â€Styrene Triblock Copolymers. Journal of Polyr Science Part A, 2017, 55, 1243-1249.	ne 2. 5	26
88	Access to Hydroxyâ€Functionalized Polypropylene through Coordination Polymerization. Angewandte Chemie - International Edition, 2020, 59, 4947-4952.	7.2	26
89	Immortal ring-opening polymerization of Îμ-caprolactone by a neat magnesium catalyst system: an approach to obtain block and amphiphilic star polymers in situ. Polymer Chemistry, 2014, 5, 4580-4588.	1.9	25
90	Mononuclear Heteroscorpionate Zwitterionic Zinc Terminal Hydride: Synthesis, Reactivity, and Catalysis for Hydrosilylation of Aldehydes. Organometallics, 2015, 34, 3944-3949.	1.1	25

#	Article	IF	CITATIONS
91	Coordination Polymerization of Renewable 3â€Methylenecyclopentene with Rareâ€Earthâ€Metal Precursors. Angewandte Chemie - International Edition, 2017, 56, 4560-4564.	7.2	25
92	Highly <i>cis</i> â€1,4 Selective Living Polymerization of Unmasked Polar 2â€(2â€Methylidenebutâ€3â€enyl)Fura and Diels–Alder Addition. Macromolecular Rapid Communications, 2017, 38, 1700227.	^{IN} 2.0	25
93	Ring-opening polymerization and block copolymerization ofL-lactide with divalent samarocene complex. Journal of Polymer Science Part A, 2003, 41, 2667-2675.	2.5	24
94	Phosphinimino-amino supported complex: Synthesis, polymerization of ethylene and dearomatisation of pyridine. Journal of Organometallic Chemistry, 2015, 798, 335-340.	0.8	24
95	Synthesis and Characterization of Dinuclear Salan Rare-Earth Metal Complexes and Their Application in the Homo- and Copolymerization of Cyclic Esters. Inorganic Chemistry, 2018, 57, 9028-9038.	1.9	24
96	1,2-Hydroboration of Pyridines by Organomagnesium. Organic Letters, 2020, 22, 4960-4965.	2.4	23
97	Highly 2,3â€5elective Polymerization of Phenylallene and Its Derivatives with Rareâ€Earth Metal Catalysts: From Amorphous to Crystalline Products. Angewandte Chemie - International Edition, 2017, 56, 14653-14657.	7.2	22
98	Highly Syndioselective Coordination (Co)Polymerization of <i>ortho</i> -Fluorostyrene. Macromolecules, 2019, 52, 9555-9560.	2.2	22
99	Rare-earth metal alkyl complexes bearing an alkoxy N-heterocyclic carbene ligand: synthesis, characterization, catalysis for isoprene polymerization. New Journal of Chemistry, 2015, 39, 7682-7687.	1.4	21
100	DFT Studies on the Polymerization of Functionalized Styrenes Catalyzed by Rare-Earth-Metal Complexes: Factors Affecting C–H Activation Relevant to Step-Growth Polymerization. Organometallics, 2018, 37, 3210-3218.	1.1	21
101	Direct Synthesis of Functional Thermoplastic Elastomer with Excellent Mechanical Properties by Scandium atalyzed Copolymerization of Ethylene and Fluorostyrenes. Angewandte Chemie - International Edition, 2021, 60, 25735-25740.	7.2	21
102	Structure and properties of multiâ€walled carbon nanotubes/polyethylene nanocomposites synthesized by in situ polymerization with supported Cp ₂ ZrCl ₂ catalyst. Polymer Composites, 2010, 31, 507-515.	2.3	20
103	Sequence-controlled ethylene/styrene copolymerization catalyzed by scandium complexes. Polymer Chemistry, 2019, 10, 235-243.	1.9	20
104	Neutral binuclear rare-earth metal complexes with four μ ₂ -bridging hydrides. Chemical Communications, 2015, 51, 5063-5065.	2.2	19
105	Perfectly isoselective polymerization of 2-vinylpyridine promoted by Î ² -diketiminato rare-earth metal cationic complexes. Dalton Transactions, 2018, 47, 14985-14991.	1.6	19
106	A convenient method to prepare random LA/CL copolymers from poly(L-lactide) and Îμ-caprolactone. Science China Chemistry, 2018, 61, 708-714.	4.2	18
107	Self-assisted stereospecific polymerization of unmasked polar 4-methylthio-1-butene. Science China Chemistry, 2019, 62, 761-766.	4.2	18
108	Synthesis and Characterization of Polypropylene-Based Polyurethanes. Macromolecules, 2020, 53, 3349-3357.	2.2	18

#	Article	IF	CITATIONS
109	Syndioselective 3,4-Polymerization of 1-Phenyl-1,3-Butadiene by Rare-Earth Metal Catalysts. ACS Catalysis, 2020, 10, 5223-5229.	5.5	17
110	Highly Syndioselective 3,4- <i>Trans</i> Polymerization of (<i>E</i>)-1-(4-Methylphenyl)-1,3-butadiene by Fluorenyl <i>N</i> -Heterocyclic Carbene Ligated Lutetium Bis(alkyl) Precursor. Macromolecules, 2015, 48, 1999-2005.	2.2	16
111	Highly selective cis-1,4 copolymerization of dienes with polar 2-(3-methylidenepent-4-en-1-yl) pyridine: an approach for recyclable elastomers. Polymer Chemistry, 2020, 11, 1646-1652.	1.9	16
112	Zinc atalyzed Hydrosilylation Copolymerization of Aromatic Dialdehydes with Diphenylsilane. Macromolecular Rapid Communications, 2017, 38, 1700590.	2.0	15
113	Copolymerization of Lactide and Cyclic Carbonate via Highly Stereoselective Catalysts To Modulate Copolymer Sequences. Macromolecules, 2018, 51, 930-937.	2.2	15
114	Highly syndioselective coordination (co)polymerization of isopropenylstyrene. Polymer Chemistry, 2018, 9, 4476-4482.	1.9	15
115	Highly Syndioselective Coordination (Co)Polymerization of para-Chlorostyrene. Macromolecules, 2020, 53, 8333-8339.	2.2	15
116	Stereo- and Temporally Controlled Coordination Polymerization Triggered by Alternating Addition of a Lewis Acid and Base. Angewandte Chemie, 2016, 128, 12154-12157.	1.6	14
117	Chain Transfer to Toluene in Styrene Coordination Polymerization. Angewandte Chemie - International Edition, 2020, 59, 4324-4328.	7.2	14
118	Isobutene (co)polymerization initiated by rare-earth metal cationic catalysts. Polymer, 2020, 187, 122105.	1.8	14
119	<i>cis</i> -1,4 Selective Copolymerization of Butadiene and Functionalized α-Olefins via Polar Group Activation Mechanism. Macromolecules, 2020, 53, 6380-6386.	2.2	14
120	Highly Syndiotactic Coordination (Co)polymerization of <i>para</i> -Methylselenostyrene. Macromolecules, 2021, 54, 1754-1759.	2.2	14
121	Rich C–H bond activations of yttrium alkyl complexes bearing phosphinimino-amine ligands. Journal of Organometallic Chemistry, 2010, 695, 2781-2788.	0.8	13
122	Insights into the Formation Process of Yttrium–Aluminum Bimetallic Alkyl Complexes Supported by a Bulky Phosphazene Ligand. Organometallics, 2018, 37, 971-978.	1.1	13
123	Highly 3,4-selective living polymerization of 2-phenyl-1,3-butadiene with amidino N-heterocyclic carbene ligated rare-earth metal bis(alkyl) complexes. RSC Advances, 2015, 5, 93507-93512.	1.7	12
124	Copolymerization of ethylene with styrene catalyzed by a scandium catalyst. Polymer Chemistry, 2018, 9, 4757-4763.	1.9	12
125	Extremely High Glass Transition Temperature Hydrocarbon Polymers Prepared through Cationic Cyclization of Highly 3,4â€Regulated Poly(Phenylâ€1,3â€Butadiene). Macromolecular Rapid Communications, 2018, 39, e1800298.	2.0	12
126	Degradation Behavior of Poly(lactide- <i>co</i> -carbonate)s Controlled by Chain Sequences. Macromolecules, 2020, 53, 5289-5296.	2.2	12

#	Article	IF	CITATIONS
127	Isospecific alternating copolymerization of unprotected polar styrenes and ethylene by the C symmetric scandium precursor via synergistic effects of two substituent groups. Giant, 2021, 7, 100061.	2.5	12
128	A Facile Approach to Produce Star Polymers Based on Coordination Polymerization. Angewandte Chemie - International Edition, 2022, 61, .	7.2	12
129	Styrene polymerization catalyzed by metal porphyrin complex/MAO for <i>in situ</i> synthesizing polystyrene containing air stable π cation radicals. Journal of Polymer Science Part A, 2008, 46, 1240-1248.	2.5	11
130	Renewable Benzofuran Polymerization Initiated by Lewis Acid Al(C6F5)3 and Mechanism. Macromolecules, 2017, 50, 8449-8455.	2.2	11
131	Sequence controlled copolymerization of lactide and a functional cyclic carbonate using stereoselective aluminum catalysts. Polymer Chemistry, 2019, 10, 4042-4048.	1.9	11
132	Access to Hydroxyâ€Functionalized Polypropylene through Coordination Polymerization. Angewandte Chemie, 2020, 132, 4977-4982.	1.6	11
133	Chemo- and Stereoselective Polymerization of Polar Divinyl Monomers by Rare-Earth Complexes. Macromolecules, 2021, 54, 3181-3190.	2.2	11
134	Stereoselective polymerization of <i>rac</i> -lactide catalyzed by zwitterionic calcium complexes. Polymer Chemistry, 2021, 12, 1518-1525.	1.9	11
135	Highly stereospecific polymerization of isoprene with homogeneous binary Ziegler-Natta catalysts based on NCN-pincer neodymium precursor. Science China Chemistry, 2010, 53, 1641-1645.	4.2	10
136	Lamellar Thickness Dependence of Crystal Modification Selection in the Syndiotactic Polystyrene γ-to-α/β Phase Transition Process. Macromolecules, 2018, 51, 497-503.	2.2	10
137	Ligand-free scandium alkyl and alkoxide complexes for immortal ring-opening polymerization of lactide. Journal of Organometallic Chemistry, 2018, 875, 5-10.	0.8	10
138	Alkaline earth metal complexes stabilized by amidine and guanidine ligands: synthesis, structure and their catalytic activity towards polymerization of <i>rac</i> lactide. Dalton Transactions, 2018, 47, 12623-12632.	1.6	10
139	Stepâ€Growth Coordination Polymerization of 5â€Hydroxymethyl Furfural with Dihydrosilanes: Synergistic Catalysis using Heteroscopionate Zinc Hydride and B(C 6 F 5) 3. Angewandte Chemie, 2019, 131, 11556.	1.6	10
140	Lutetiumâ€Methanediideâ€Alkyl Complexes: Unique Reactivity toward Carbodiimide and Pyridine. European Journal of Inorganic Chemistry, 2019, 2019, 2277-2283.	1.0	10
141	Cp2ZrHCl induced catalytic chain scission of diene-based polymers under mild conditions: Influence of chemical environment around C=C bonds. Polymer, 2019, 161, 181-189.	1.8	10
142	Copolymerization of ethylene and halogenated styrenes using scandium catalysts. Polymer, 2020, 209, 123057.	1.8	10
143	Synthesis of Long-Subchain Hyperbranched Polypropylene Using Thermally Degraded Products as Precursor. Macromolecules, 2021, 54, 5567-5576.	2.2	10
144	Isospecific (Co)polymerization of Unmasked Polar Styrenes by Neutral Rareâ€Earth Metal Catalysts. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10

#	Article	IF	CITATIONS
145	Neutral lutetium complex/polyamine mediated immortal ring-opening polymerization of rac-lactide: facile synthesis of well-defined hydroxyl-end and amide-core stereoregular star polylactide. Polymer Chemistry, 2015, 6, 7711-7716.	1.9	9
146	Chemo―and stereoselective polymerization of 3â€methyleneheptaâ€1,6â€Diene and Its thiolâ€ene modificatior Journal of Polymer Science Part A, 2017, 55, 1031-1039.	^{1.} 2.5	9
147	Coordination Polymerization of Renewable 3â€Methylenecyclopentene with Rareâ€Earthâ€Metal Precursors. Angewandte Chemie, 2017, 129, 4631-4635.	1.6	9
148	Molecular Thorium Trihydrido Clusters Stabilized by Cyclopentadienyl Ligands. Angewandte Chemie - International Edition, 2020, 59, 11250-11255.	7.2	9
149	Stereoselective Polymerization of an Aromatic Vinyl Monomer to Access Highly Syndiotactic Poly(vinyl alcohol). Macromolecular Rapid Communications, 2020, 41, e2000038.	2.0	9
150	High-Performance Elastomer from Trans-1,4 Copolymerization of Ethylene and Butadiene. Macromolecules, 2021, 54, 9445-9451.	2.2	9
151	Catalytic hydroboration of carbonyl derivatives by using phosphinimino amide ligated magnesium complexes. Dalton Transactions, 2021, 50, 13037-13041.	1.6	8
152	Polymerization of 2,2′â€dimethyltrimethylene carbonate by lutetium complexes bearing aminoâ€phosphine ligands. Journal of Applied Polymer Science, 2009, 112, 3110-3118.	1.3	7
153	An intensification and integration process of preparing thermal stable polylactide end-capped by phosphate ester. Polymer, 2015, 80, 104-108.	1.8	6
154	Immortal Ring-Opening Polymerization of rac-Lactide Using Polymeric Alcohol as Initiator to Prepare Graft Copolymer. Polymers, 2016, 8, 17.	2.0	6
155	<i>cis</i> â€1,4â€5elective Copolymerization of Ethylene and Butadiene: A Compromise between Two Mechanisms. Angewandte Chemie, 2017, 129, 7079-7083.	1.6	6
156	Effect of the tactic structure on the chiroptical properties of helical vinylbiphenyl polymers. Polymer Chemistry, 2019, 10, 3887-3894.	1.9	6
157	Syndioselective Coordination (Co)Polymerization of Alkyne-Substituted Styrenes Using Rare-Earth Metal Catalysts. Macromolecules, 2020, 53, 5895-5902.	2.2	6
158	Additive-Triggered Chain Transfer to a Solvent in Coordination Polymerization. Macromolecules, 2020, 53, 1205-1211.	2.2	6
159	Hydroboration of CO ₂ catalyzed by heteroscorpionate zwitterionic zinc and magnesium hydride complexes. Dalton Transactions, 2022, 51, 4786-4789.	1.6	6
160	Syndioselective Polymerization of Vinylnaphthalene. Macromolecular Rapid Communications, 2019, 40, 1900061.	2.0	5
161	Ethylene-Triggered Regioselectivity Switch of Dimethylbutadiene in Their Copolymerization: Formation of "Plastic―Rubber and Mechanism. ACS Catalysis, 2022, 12, 953-962.	5.5	5
162	Highly 2,3â€Selective Polymerization of Phenylallene and Its Derivatives with Rareâ€Earth Metal Catalysts: From Amorphous to Crystalline Products. Angewandte Chemie, 2017, 129, 14845-14849.	1.6	4

#	Article	IF	CITATIONS
163	Regioselective Ring Opening Reactions of Pyridine N-Oxide Analogues by Magnesium Hydride Complexes. Organometallics, 2017, 36, 3597-3604.	1.1	4
164	Syndio-and <i>cis</i> -1,4 dually selective copolymerization of polar fluorostyrene and butadiene using rare-earth metal catalysts. Inorganic Chemistry Frontiers, 2020, 7, 3961-3968.	3.0	4
165	Direct Synthesis of Functional Thermoplastic Elastomer with Excellent Mechanical Properties by Scandium atalyzed Copolymerization of Ethylene and Fluorostyrenes. Angewandte Chemie, 2021, 133, 25939-25944.	1.6	4
166	Coordination Polymerization of Renewable (<i>E</i>)â€4, <scp>8â€Dimethyl</scp> â€1,3, <scp>7â€Nonatriene</scp> by <scp>Rareâ€Earth</scp> Metal Cat Chinese Journal of Chemistry, 2022, 40, 1939-1944.	al ys ts.	4
167	Rare-Earth Metal Bis(alkyl) Complexes Bearing the FluCH ₂ -THF Ligand: Synthesis, Structures, and Catalysis toward Polymerizations of Conjugated Dienes. Organometallics, 2022, 41, 1412-1418.	1.1	4
168	Highly syndioselective coordination (co)polymerization of vinyl heteroaromatic monomers using rare-earth-metal complexes. Polymer Chemistry, 2020, 11, 7650-7655.	1.9	3
169	Effect of Methoxy Side Groups on the Crystal Structures of a Series of <i>Syndiotactic</i> Polymethoxystyrenes as Studied by the X-ray Diffraction Data Analysis. Macromolecules, 2021, 54, 1881-1893.	2.2	3
170	Molecular Thorium Trihydrido Clusters Stabilized by Cyclopentadienyl Ligands. Angewandte Chemie, 2020, 132, 11346-11351.	1.6	2
171	The yttrium-catalyzed heteroatom-assisted terpolymerization of ortho-alkoxystyrene, isoprene and butadiene with high regio- and stereoselectivity. Polymer Chemistry, 2021, 12, 4576-4582.	1.9	2
172	Isospecific (Co)polymerization of Unmasked Polar Styrenes by Neutral Rareâ€Earth Metal Catalysts. Angewandte Chemie, 2022, 134, e202112966.	1.6	2
173	Chain Transfer to Toluene in Styrene Coordination Polymerization. Angewandte Chemie, 2020, 132, 4354-4358.	1.6	1
174	Synthesis of Poly(Ethyl vinyl ether) with high molecular weight by rare-earth metal cationic catalysts. Polymer, 2021, 226, 123790.	1.8	1
175	Side-Arm Assisted Anilido-Imine Based Rare-Earth Metal Complexes for Isoprene Stereoselective Polymerization. Molecules, 2021, 26, 4154.	1.7	0
176	Isospecific Polymerization of Halide- and Amino-Substituted Styrenes Using a Bis(phenolate) Titanium Catalyst. Catalysts, 2022, 12, 439.	1.6	0
177	A Facile Approach to Produce Star Polymers Based on Coordination Polymerization. Angewandte Chemie, 0, , .	1.6	0