Zhenping Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1615534/publications.pdf Version: 2024-02-01

		57758	102487
269	7,524	44	66
papers	citations	h-index	g-index
271	271	271	5653
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	An Alternating Conduction-Insulation Molecular "Fence―Model from Fluorinated Metallopolymers. Chemical Communications, 2022, , .	4.1	1
2	Synthesis and Phase Behavior of (Semifluorinated Alkane)â€Based Sideâ€Chain Liquid Crystalline Copolymers. Macromolecular Rapid Communications, 2022, 43, .	3.9	8
3	Multimesophase transitions of main-chain liquid crystalline copolymers with strictly alternating fluorocarbon chains. Polymer Chemistry, 2021, 12, 736-743.	3.9	11
4	Facile synthesis of micron-size Janus particles by one-pot suspension polymerization and their functional modification. Polymer Chemistry, 2021, 12, 2722-2730.	3.9	0
5	Photocontrolled bromine–iodine transformation reversible-deactivation radical polymerization: facile synthesis of star copolymers and unimolecular micelles. Polymer Chemistry, 2021, 12, 2335-2345.	3.9	14
6	Reduction-Induced Crystallization-Driven Self-Assembly of Main-Chain-Type Alternating Copolymers: Transformation from 1D Lines to 2D Platelets. ACS Macro Letters, 2021, 10, 564-569.	4.8	11
7	Facile Synthesis of Unimodal Polymethacrylates with Narrow Dispersity via NIR LED Lightâ€Controlled Bromine–lodine Transformation Reversibleâ€Deactivation Radical Polymerization. Macromolecular Rapid Communications, 2021, 42, e2100211.	3.9	14
8	A novel reversible-deactivation radical polymerization strategy via near-infrared light-controlled photothermal conversion dividing wall-type heat exchanger. Science China Chemistry, 2021, 64, 1242-1250.	8.2	11
9	Facile photochemical synthesis of main-chain-type semifluorinated alternating copolymers catalyzed by conventional amines or halide salts. Chemical Communications, 2021, 57, 11354-11357.	4.1	7
10	Photocontrolled Iodineâ€Mediated Reversibleâ€Deactivation Radical Polymerization: Solution Polymerization of Methacrylates by Irradiation with NIR LED Light. Angewandte Chemie, 2020, 132, 3938-3944.	2.0	11
11	Photocontrolled Iodineâ€Mediated Reversibleâ€Deactivation Radical Polymerization: Solution Polymerization of Methacrylates by Irradiation with NIR LED Light. Angewandte Chemie - International Edition, 2020, 59, 3910-3916.	13.8	64
12	Preparation of a novel sandwich-type electrochemical immunosensor for AFP detection based on an ATRP and click chemistry technique. Polymer Chemistry, 2020, 11, 900-908.	3.9	18
13	Photocontrolled iodine-mediated reversible-deactivation radical polymerization with a semifluorinated alternating copolymer as the macroinitiator. Polymer Chemistry, 2020, 11, 7497-7505.	3.9	16
14	Construction of a near-infrared light-controlled reciprocating piston "pump―based on soft actuators with fluorine-containing alternating polymer. Journal of Materials Chemistry C, 2020, 8, 10238-10247.	5.5	9
15	One-Step Photocontrolled Polymerization-Induced Self-Assembly (Photo-PISA) by Using In Situ Bromine-Iodine Transformation Reversible-Deactivation Radical Polymerization. Polymers, 2020, 12, 150.	4.5	8
16	Facile synthesis of poly(<i>N</i> -vinyl pyrrolidone) block copolymers with "more-activated― monomers by using photoinduced successive RAFT polymerization. Polymer Chemistry, 2020, 11, 2080-2088.	3.9	9
17	Photoâ€Controlled Polymerizationâ€Induced Selfâ€Assembly (Photoâ€PISA): A Novel Strategy Using In Situ Bromineâ€Iodine Transformation Living Radical Polymerization. Macromolecular Rapid Communications, 2019, 40, e1800327.	3.9	34
18	Photocontrolled Iodine-Mediated Green Reversible-Deactivation Radical Polymerization of Methacrylates: Effect of Water in the Polymerization System. ACS Macro Letters, 2019, 8, 1419-1425.	4.8	36

#	Article	IF	CITATIONS
19	Fabrication of self-healing hydrogels with surface functionalized microcapsules from stellate mesoporous silica. Polymer Chemistry, 2019, 10, 503-511.	3.9	35
20	Microwaveâ€Assisted Reversible Coordinationâ€Mediated Polymerization for Selfâ€Healing Hybrid Materials: RGO@PDA Simultaneous as Catalyst and Nanocomposites in Oneâ€Pot. Macromolecular Materials and Engineering, 2019, 304, 1900477.	3.6	4
21	lodine-mediated reversible-deactivation radical polymerization: a powerful strategy for polymer synthesis. Polymer Chemistry, 2019, 10, 2504-2515.	3.9	63
22	Visible light controlled aqueous RAFT continuous flow polymerization with oxygen tolerance. Polymer Chemistry, 2019, 10, 2064-2072.	3.9	27
23	A sustainable photocontrolled ATRP strategy: facile separation and recycling of a visible-light-mediated catalyst <i>fac</i> -[Ir(ppy) ₃]. Polymer Chemistry, 2018, 9, 584-592.	3.9	20
24	Construction of dual-functional polymer nanomaterials with near-infrared fluorescence imaging and polymer prodrug by RAFT-mediated aqueous dispersion polymerization. Nanoscale, 2018, 10, 10277-10287.	5.6	21
25	Organocatalytic Approach to Functional Semifluorinated Polymers Driven by Visible Light. Macromolecular Rapid Communications, 2018, 39, e1800151.	3.9	18
26	Transition Metal Catalyst Separation and Recycling: Recent Progress in TPSC-based ATRP. Current Organic Chemistry, 2018, 22, 1256-1263.	1.6	4
27	Synthesis of soap-free emulsion with high solid content by differential dripping RAFT polymerization-induced self-assembly. RSC Advances, 2017, 7, 6559-6564.	3.6	16
28	Photocatalyzed iron-based ATRP of methyl methacrylate using 1,3-dimethyl-2-imidazolidinone as both solvent and ligand. RSC Advances, 2017, 7, 3888-3893.	3.6	12
29	The in situ formation of nanoparticles via RAFT polymerization-induced self-assembly in a continuous tubular reactor. Polymer Chemistry, 2017, 8, 1495-1506.	3.9	43
30	Photoinduced Ironâ€Based Waterâ€Induced Phase Separable Catalysis (WPSC) ICAR ATRP of Poly(ethylene) Tj E	.TQ ₃ 900	rgBT /Overloc
31	Visible light-induced PET-RAFT polymerization of methacrylates with novel organic photocatalysts. RSC Advances, 2017, 7, 24040-24045.	3.6	19
32	Insight into the polymerization mechanism of photoinduced step transfer-addition & radical-termination (START) polymerizations. Polymer Chemistry, 2017, 8, 3910-3920.	3.9	21
33	Visible-light-induced living radical polymerization using in situ bromine-iodine transformation as an internal boost. Polymer Chemistry, 2017, 8, 2538-2551.	3.9	46
34	Facile one-pot synthesis and self-healing properties of tetrazole-based metallopolymers in the presence of iron salts. RSC Advances, 2017, 7, 47316-47323.	3.6	9
35	Facile synthesis of poly(vinyl acetate)-b-polystyrene copolymers mediated by an iniferter agent using a single methodology. Polymer Chemistry, 2017, 8, 5918-5923.	3.9	13
36	Synthesis of highly proton-conductive poly(arylene ether sulfone) bearing perfluoroalkyl sulfonic acids via polymer post-modification. Polymer, 2017, 123, 345-354.	3.8	9

#	Article	IF	CITATIONS
37	Microwaveâ€assisted rapid fabrication of antibacterial polyacrylonitrile microfibers/nanofibers via nitrile click chemistry and electrospinning. Journal of Applied Polymer Science, 2017, 134, 45490.	2.6	7
38	The positive effect of water on photo-induced step transfer-addition & radical-termination (START) polymerization. RSC Advances, 2017, 7, 17988-17996.	3.6	12
39	Metalâ€Free Atom Transfer Radical Polymerization of Methyl Methacrylate with ppm Level of Organic Photocatalyst. Macromolecular Rapid Communications, 2017, 38, 1600461.	3.9	78
40	Step Transferâ€Addition and Radicalâ€Termination (START) Polymerization of α,ï‰â€Unconjugated Dienes under Irradiation of Blue LED Light. Macromolecular Rapid Communications, 2017, 38, 1600587.	ິ 3.9	26
41	Reversible Addition-Fragmentation Chain Transfer Polymerization of Acrylonitrile under Irradiation of Blue LED Light. Polymers, 2017, 9, 4.	4.5	19
42	Iron-Mediated Homogeneous ICAR ATRP of Methyl Methacrylate under ppm Level Organometallic Catalyst Iron(III) Acetylacetonate. Polymers, 2016, 8, 29.	4.5	24
43	ICAR ATRP of Acrylonitrile under Ambient and High Pressure. Polymers, 2016, 8, 59.	4.5	23
44	Highly Efficient and Facile Photocatalytic Recycling System Suitable for ICAR ATRP of Hydrophilic Monomers. Macromolecular Rapid Communications, 2016, 37, 1337-1343.	3.9	23
45	PMDETA as an efficient catalyst for bulk reversible complexation mediated polymerization (RCMP) in the absence of additional metal salts and deoxygenation. RSC Advances, 2016, 6, 97455-97462.	3.6	19
46	RAFT copolymerization of a phosphorus-containing monomer with α-hydroxy phosphonate and methyl methacrylate. RSC Advances, 2016, 6, 34659-34665.	3.6	15
47	Real-time monitoring of a controlled drug delivery system in vivo: construction of a near infrared fluorescence monomer conjugated with pH-responsive polymeric micelles. Journal of Materials Chemistry B, 2016, 4, 3377-3386.	5.8	17
48	Catalyst-free iodine-mediated living radical polymerization under irradiation over a wide visible-light spectral scope. Polymer Chemistry, 2016, 7, 3576-3588.	3.9	44
49	Albumin-NIR dye self-assembled nanoparticles for photoacoustic pH imaging and pH-responsive photothermal therapy effective for large tumors. Biomaterials, 2016, 98, 23-30.	11.4	182
50	Photosensitizer cross-linked nano-micelle platform for multimodal imaging guided synergistic photothermal/photodynamic therapy. Nanoscale, 2016, 8, 15323-15339.	5.6	70
51	Straightforward catalyst/solvent-free iodine-mediated living radical polymerization of functional monomers driven by visible light irradiation. Chemical Communications, 2016, 52, 10850-10853.	4.1	33
52	A Facile Strategy for Catalyst Separation and Recycling Suitable for ATRP of Hydrophilic Monomers Using a Macroligand. Macromolecular Rapid Communications, 2016, 37, 143-148.	3.9	19
53	Synthesis of amphiphilic nanoparticles and multi-block hydrophilic copolymers by a facile and effective "living―radical polymerization in water. Polymer Chemistry, 2016, 7, 2486-2491.	3.9	7
54	Metal-free photoinduced electron transfer–atom transfer radical polymerization (PET–ATRP) via a visible light organic photocatalyst. Polymer Chemistry, 2016, 7, 689-700.	3.9	217

#	Article	IF	CITATIONS
55	Facilely Recyclable Cu(II) Macrocomplex with Thermoregulated Poly(ionic liquid) Macroligand: Serving as a Highly Efficient Atom Transfer Radical Polymerization Catalyst. ACS Sustainable Chemistry and Engineering, 2016, 4, 7066-7073.	6.7	18
56	Iron-mediated AGET ATRP with crown ether as both ligand and solvent. RSC Advances, 2015, 5, 104733-104739.	3.6	6
57	A Selfâ€Assembled Albuminâ€Based Nanoprobe for In Vivo Ratiometric Photoacoustic pH Imaging. Advanced Materials, 2015, 27, 6820-6827.	21.0	244
58	AGET ATRP of Methyl Methacrylate Based on Thermoregulated Phase Transfer Catalysis in Organic/Aqueous Biphasic System: Facile and Highly Efficient In Situ Catalyst/Ligand Separation and Recycling. Macromolecular Chemistry and Physics, 2015, 216, 1171-1179.	2.2	16
59	Reversible additionâ€fragmentation chain transfer polymerization of vinyl acetate under high pressure. Journal of Polymer Science Part A, 2015, 53, 1430-1436.	2.3	11
60	Recent Progress on Transition Metal Catalyst Separation and Recycling in ATRP. Macromolecular Rapid Communications, 2015, 36, 1702-1721.	3.9	81
61	A Novel Janus Initiator for ATRP: Initiator Design and Application in Polymerization. Macromolecular Chemistry and Physics, 2015, 216, 1653-1659.	2.2	2
62	Recent advances in "livingâ€ ¦ controlled radical polymerization of phosphorus-containing monomers and their potential applications. Science China Chemistry, 2015, 58, 1633-1640.	8.2	13
63	A surfactant-free emulsion RAFT polymerization of methyl methacrylate in a continuous tubular reactor. Polymer Chemistry, 2015, 6, 1937-1943.	3.9	32
64	Diffusion-Regulated Phase-Transfer Catalysis for Atom Transfer Radical Polymerization of Methyl Methacrylate in an Aqueous/Organic Biphasic System. Macromolecular Rapid Communications, 2015, 36, 538-546.	3.9	20
65	A novel methacrylate with a bisphosphonate group: RAFT polymerization and flame retardant property of the resultant polymers. Polymer Chemistry, 2015, 6, 2283-2289.	3.9	17
66	Magnetic nanomaterials with near-infrared pH-activatable fluorescence via iron-catalyzed AGET ATRP for tumor acidic microenvironment imaging. Journal of Materials Chemistry B, 2015, 3, 2786-2800.	5.8	33
67	Facile iron(<scp>iii</scp>)-mediated ATRP of MMA with phosphorus-containing ligands in the absence of any additional initiators. RSC Advances, 2015, 5, 62577-62584.	3.6	11
68	Thermoregulated phase transfer catalysis in aqueous/organic biphasic system: facile and highly efficient ATRP catalyst separation and recycling in situ using typical alkyl halide as initiator. Polymer Chemistry, 2015, 6, 6394-6401.	3.9	14
69	Fast RAFT aqueous polymerization in a continuous tubular reactor: consecutive synthesis of a double hydrophilic block copolymer. Polymer Chemistry, 2015, 6, 5030-5035.	3.9	18
70	Facile and universal photo-induced living radical polymerization system mediated by iniferter agent and copper(<scp>ii</scp>) acetate at ambient temperature. RSC Advances, 2015, 5, 31657-31663.	3.6	12
71	Reversible chain transfer catalyzed polymerization (RTCP) in nitrogen-based solvents without additional catalysts. RSC Advances, 2015, 5, 34769-34776.	3.6	7
72	Fe(<scp>iii</scp>)-mediated ICAR ATRP in a p-xylene/PEG-200 biphasic system: facile and highly efficient separation and recycling of an iron catalyst. Polymer Chemistry, 2015, 6, 6616-6622.	3.9	26

#	Article	IF	CITATIONS
73	Self-assembly of BODIPY based pH-sensitive near-infrared polymeric micelles for drug controlled delivery and fluorescence imaging applications. Nanoscale, 2015, 7, 16399-16416.	5.6	54
74	An atom transfer radical polymerization system: catalyzed by an iron catalyst in PEG-400. Green Chemistry, 2015, 17, 271-278.	9.0	43
75	Bulk AGET ATRP of methyl methacrylate using iron(<scp>iii</scp>) acetylacetonate as a catalyst. Polymer Chemistry, 2014, 5, 6804-6810.	3.9	17
76	Facile "Living―Radical Polymerization of Methyl Methacrylate in the Presence of Iniferter Agents: Homogeneous and Highly Efficient Catalysis from Copper(II) Acetate. Macromolecular Rapid Communications, 2014, 35, 1332-1339.	3.9	41
77	Living cationic polymerization of bisazobenzene-containing vinyl ether and synthesis of a graft copolymer by combination with ATRP. Polymer Chemistry, 2014, 5, 4076-4082.	3.9	9
78	A versatile Fe ₃ O ₄ based platform via iron-catalyzed AGET ATRP: towards various multifunctional nanomaterials. Polymer Chemistry, 2014, 5, 638-645.	3.9	28
79	Cu(II)â€Mediated Atom Transfer Radical Polymerization of Methyl Methacrylate via a Strategy of Thermoâ€Regulated Phaseâ€Separable Catalysis in a Liquid/Liquid Biphasic System: Homogeneous Catalysis, Facile Heterogeneous Separation, and Recycling. Macromolecular Rapid Communications, 2014, 35, 1615-1621.	3.9	22
80	Initiator-chain transfer agent combo in the RAFT polymerization of styrene. Chemical Communications, 2014, 50, 9722-9724.	4.1	6
81	Thermo-regulated phase separable catalysis (TPSC)-based atom transfer radical polymerization in a thermo-regulated ionic liquid. Chemical Communications, 2014, 50, 9266-9269.	4.1	39
82	Facile and highly efficient "living―radical polymerization of hydrophilic vinyl monomers in water. RSC Advances, 2014, 4, 52430-52437.	3.6	6
83	Near-infrared dye bound albumin with separated imaging and therapy wavelength channels for imaging-guided photothermal therapy. Biomaterials, 2014, 35, 8206-8214.	11.4	210
84	Dimanganese decacarbonyl/2-cyanoprop-2-yl-1-dithionaphthalate: toward sunlight induced RAFT polymerization of MMA. Polymer Chemistry, 2014, 5, 4641-4648.	3.9	23
85	Bifunctional nanoparticles with magnetism and NIR fluorescence: controlled synthesis from combination of AGET ATRP and †click' reaction. Nanotechnology, 2014, 25, 045602.	2.6	21
86	Highly Active ppm Level Organic Copper Catalyzed Photoâ€Induced ICAR ATRP of Methyl Methacrylate. Macromolecular Rapid Communications, 2014, 35, 1879-1885.	3.9	23
87	Fluorescence emission of amphiphilic copolymers bearing benzimidazole groups: Stimuli-responsive behaviors in aqueous solution. Journal of Polymer Science Part A, 2013, 51, 4459-4466.	2.3	5
88	Iron-mediated AGET ATRP of MMA using acidic/basic salts as reducing agents. Polymer Bulletin, 2013, 70, 631-642.	3.3	8
89	Fabrication of magnetic nanofibers via surface-initiated RAFT polymerization and coaxial electrospinning. Reactive and Functional Polymers, 2013, 73, 1447-1454.	4.1	12
90	Seleniumâ€substituted carbonates as mediators for controlled radical polymerization. Journal of Polymer Science Part A, 2013, 51, 2606-2613.	2.3	17

#	Article	IF	CITATIONS
91	Facile Fabrication of Biocompatible and Tunable Multifunctional Nanomaterials via Iron-Mediated Atom Transfer Radical Polymerization with Activators Generated by Electron Transfer. ACS Applied Materials & Interfaces, 2013, 5, 9663-9669.	8.0	22
92	Highâ€Efficiency Preparation of Macrocyclic Polymers via a Circulatory Extraction–Cyclization Strategy. Macromolecular Chemistry and Physics, 2013, 214, 1107-1113.	2.2	8
93	Atom transfer radical polymerization of methyl methacrylate with a thermo-responsive ligand: construction of thermoregulated phase-transfer catalysis in an aqueous–organic biphasic system. Polymer Chemistry, 2013, 4, 2876.	3.9	26
94	A highly active homogeneous ICAR ATRP of methyl methacrylate using ppm levels of organocopper catalyst. Polymer Chemistry, 2013, 4, 3725.	3.9	24
95	Iron-mediated (dual) concurrent ATRP–RAFT polymerization of water-soluble poly(ethylene glycol) monomethyl ether methacrylate. Polymer Chemistry, 2013, 4, 5664.	3.9	14
96	Synthesis of high molecular weight and narrow molecular weight distribution poly(acrylonitrile) via RAFT polymerization. Journal of Polymer Science Part A, 2013, 51, 1197-1204.	2.3	24
97	Synthesis of well-defined copolymer of acrylonitrile and maleic anhydride via RAFT polymerization. Journal of Polymer Science Part A, 2013, 51, 5263-5269.	2.3	9
98	Triphenylphosphine as phosphorus catalyst for reversible chain-transfer catalyzed polymerization (RTCP). Polymer Chemistry, 2013, 4, 3069.	3.9	19
99	Organoselenium compounds: development of a universal "living―free radical polymerization mediator. Polymer Chemistry, 2013, 4, 3453.	3.9	34
100	Atom transfer radical polymerization of hydrophilic monomers and its applications. Polymer Chemistry, 2013, 4, 2919.	3.9	66
101	Developing a Synthetic Approach with Thermoregulated Phase-Transfer Catalysis: Facile Access to Metal-Mediated Living Radical Polymerization of Methyl Methacrylate in Aqueous/Organic Biphasic System. Macromolecules, 2013, 46, 2060-2066.	4.8	55
102	A Highâ€Efficiency Strategy for Synthesizing Cyclic Polymers of Methacryates in One Pot. Macromolecular Rapid Communications, 2013, 34, 1014-1019.	3.9	19
103	Facile Ironâ€Mediated Dispersantâ€Free Suspension Polymerization of Methyl Methacrylate via Reverse ATRP in Water. Macromolecular Rapid Communications, 2013, 34, 1747-1754.	3.9	35
104	A Bifunctional Diblock Copolymer from Consecutive RAFT Polymerizations and its Functionalization. Macromolecular Chemistry and Physics, 2013, 214, 654-663.	2.2	4
105	Synthesis of Amphiphilic Azobenzene Functionalized Branched-Type Copolymer Based on Branched Poly(2-(Dimethylamino) ethyl methacrylate) and Investigation of Its Drug Release Properties. Journal of Macromolecular Science - Pure and Applied Chemistry, 2012, 49, 834-844.	2.2	2
106	Straightforward and Highly Efficient Synthesis of Diselenocarbamates. Organic Letters, 2012, 14, 6170-6173.	4.6	12
107	Facile Soapâ€Free Miniemulsion Polymerization of Methyl Methacrylate via Reverse Atom Transfer Radical Polymerization. Macromolecular Rapid Communications, 2012, 33, 2121-2126.	3.9	17
108	Favorable hydrogen bonding in room-temperature Cu(0)-mediated controlled radical polymerization of 4-vinylpyridine. Polymer Chemistry, 2012, 3, 2731.	3.9	17

#	Article	IF	CITATIONS
109	AGET ATRP of methyl methacrylatevia a bimetallic catalyst. RSC Advances, 2012, 2, 840-847.	3.6	17
110	Reversible-deactivation radical polymerization mediated by CuSO4·5H2O: an alternative and promising copper(ii)-based catalyst. Polymer Chemistry, 2012, 3, 3220.	3.9	9
111	RAFT Copolymerization of Glycidyl Methacrylate and <i>N</i> , <i>N</i> â€Dimethylaminoethyl Methacrylate. Chinese Journal of Chemistry, 2012, 30, 2138-2144.	4.9	8
112	Ligandâ€free Cu(0)â€mediated controlled radical polymerization of methyl methacrylate at ambient temperature. Journal of Polymer Science Part A, 2012, 50, 711-719.	2.3	20
113	Zeroâ€valent bimetallic iron/copper catalyzed SET‣RP: A dual activation by zeroâ€valent iron. Journal of Polymer Science Part A, 2012, 50, 936-943.	2.3	11
114	SETâ€RAFT of MMA mediated by ascorbic acidâ€activated copper oxide. Journal of Polymer Science Part A, 2012, 50, 1424-1433.	2.3	11
115	Basic ionic liquid/FeCl ₃ ·6H ₂ O as an efficient catalyst for AGET ATRP of methyl methacrylate. Journal of Polymer Science Part A, 2012, 50, 1605-1610.	2.3	14
116	ATRP of styrene catalyzed by elemental Fe(0) and Br ₂ : An easy and economical ATRP process. Journal of Polymer Science Part A, 2012, 50, 2182-2187.	2.3	9
117	AGET ATRP of waterâ€soluble PEGMA: Fast living radical polymerization mediated by iron catalyst. Journal of Polymer Science Part A, 2012, 50, 2194-2200.	2.3	24
118	New seleniumâ€based iniferter agent for living free radical polymerization of styrene under UV irradiation. Journal of Polymer Science Part A, 2012, 50, 2211-2218.	2.3	32
119	Ironâ€mediated AGET ATRP of methyl methacrylate using metal wire as reducing agent. Journal of Polymer Science Part A, 2012, 50, 2244-2253.	2.3	28
120	Synthesis of novel side hain triphenylamine polymers with azobenzene moieties via RAFT polymerization and investigation on their photoelectric properties. Journal of Polymer Science Part A, 2012, 50, 3788-3796.	2.3	14
121	Producing bimodal molecular weight distribution polymers through facile oneâ€pot/oneâ€step RAFT polymerization. Journal of Polymer Science Part A, 2012, 50, 4103-4109.	2.3	7
122	Polymerâ€Grafted Modification of Activated Carbon by Surfaceâ€Initiated AGET ATRP. Macromolecular Chemistry and Physics, 2012, 213, 868-877.	2.2	14
123	Facile Ironâ€Mediated AGET ATRP for Waterâ€Soluble Poly(ethylene glycol) Monomethyl Ether Methacrylate in Water. Macromolecular Rapid Communications, 2012, 33, 1067-1073.	3.9	46
124	Controlled Bimodal Molecularâ€Weightâ€Distribution Polymers: Facile Synthesis by RAFT Polymerization. Chemistry - A European Journal, 2012, 18, 6015-6021.	3.3	14
125	Activators generated by electron transfer for atom transfer radical polymerization: recent advances in catalyst and polymer chemistry. Polymer Chemistry, 2012, 3, 2685.	3.9	108
126	60Co γ-irradiation-initiated RAFT polymerization of VAc at room temperature. Reactive and Functional Polymers, 2012, 72, 153-159.	4.1	11

8

#	Article	IF	CITATIONS
127	Fe(0) Powder/CuBr2-Mediated "Living″Controlled Radical Polymerization of Methyl Methacrylate and Styrene at Ambient Temperature. Macromolecular Chemistry and Physics, 2012, 213, 439-446.	2.2	8
128	Multistimuli-responsive hybrid nanoparticles with magnetic core and thermoresponsive fluorescence-labeled shell via surface-initiated RAFT polymerization. Soft Matter, 2011, 7, 6958.	2.7	50
129	Anticoagulant Surface of 316 L Stainless Steel Modified by Surface-Initiated Atom Transfer Radical Polymerization. ACS Applied Materials & Interfaces, 2011, 3, 1675-1680.	8.0	26
130	Copper(0)-Mediated Living Radical Copolymerization of Styrene and Methyl Methacrylate at Ambient Temperature. Macromolecules, 2011, 44, 3227-3232.	4.8	26
131	Catalytic amounts of sodium hydroxide as additives for iron-mediated AGET ATRP of MMA. Polymer Chemistry, 2011, 2, 2385.	3.9	37
132	Bifunctional Nanoparticles with Fluorescence and Magnetism via Surface-Initiated AGET ATRP Mediated by an Iron Catalyst. Langmuir, 2011, 27, 12684-12692.	3.5	77
133	Iron-Mediated ICAR ATRP of Methyl Methacrylate. Macromolecules, 2011, 44, 3233-3239.	4.8	124
134	Synthesis and Aggregation Behaviors of Nonlinear Multiresponsive, Multihydrophilic Block Copolymers. Macromolecules, 2011, 44, 3366-3373.	4.8	34
135	Synthesis of azobenzene functionalized dendritic block copolymer based on hyperbranched PDMAEMA and investigation of its drug release properties. Journal of Controlled Release, 2011, 152, e104-e105.	9.9	5
136	Synthesis and properties of hydrogels prepared via AGET ATRP using iron salt as catalyst. Journal of Controlled Release, 2011, 152, e210-e211.	9.9	4
137	Synthesis and characters of hyperbranched poly(vinyl acetate) by RAFT polymeraztion. European Polymer Journal, 2011, 47, 1912-1922.	5.4	28
138	Copper(0)â€mediated living radical polymerization of acrylonitrile at room temperature. Journal of Polymer Science Part A, 2011, 49, 1183-1189.	2.3	24
139	A novel approach to modify poly(vinylidene fluoride) via ironâ€mediated atom transfer radical polymerization using activators generated by electron transfer. Journal of Polymer Science Part A, 2011, 49, 2315-2324.	2.3	31
140	ATRP of MMA under ⁶⁰ Co γâ€irradiation at room temperature. Journal of Polymer Science Part A, 2011, 49, 3588-3594.	2.3	2
141	Alumina additives for fast ironâ€mediated AGET ATRP of MMA using onium salt as ligand. Journal of Polymer Science Part A, 2011, 49, 3970-3979.	2.3	39
142	Rateâ€enhanced ATRP in the presence of catalytic amounts of base: An example of ironâ€mediated AGET ATRP of MMA. Journal of Polymer Science Part A, 2011, 49, 3980-3987.	2.3	35
143	<i>In situ</i> Cu(0) catalyzed SET‣RP: The first attempt. Journal of Polymer Science Part A, 2011, 49, 4694-4700.	2.3	18
144	Lightâ€driven and aggregationâ€induced emission from side•hain azoindazole polymers. Journal of Polymer Science Part A, 2011, 49, 4911-4920.	2.3	31

#	Article	IF	CITATIONS
145	A Highly Efficient Ironâ€Mediated AGET ATRP of Methyl Methacrylate Using Fe(0) Powder as the Reducing Agent. Macromolecular Chemistry and Physics, 2011, 212, 999-1006.	2.2	27
146	Iron(III)â€Mediated AGET ATRP of Methyl Methacrylate Using Vitamin C Sodium Salt as a Reducing Agent. Macromolecular Chemistry and Physics, 2011, 212, 1481-1488.	2.2	16
147	Ironâ€mediated AGET ATRP of Methyl Methacrylate in the Presence of Catalytic Amounts of Base. Macromolecular Chemistry and Physics, 2011, 212, 1474-1480.	2.2	13
148	Modification of SEBS rubber via iron-mediated AGET ATRP in the presence of limited amounts of air. Reactive and Functional Polymers, 2011, 71, 634-640.	4.1	20
149	Chlorodithiocarbamateâ€Mediated RAFT Polymerization: A Novel Synthetic Method for ATRP Macroinitiators. Macromolecular Reaction Engineering, 2010, 4, 264-271.	1.5	7
150	Stable free radical polymerization of styrene with 4-sulphonate-2,2,6,6-tetramethylpiperidine-N-oxyl as mediators. Polymer Bulletin, 2010, 64, 1-13.	3.3	7
151	Fe(III)-catalyzed AGET ATRP of styrene using triphenyl phosphine as ligand. Polymer Bulletin, 2010, 64, 233-244.	3.3	25
152	Mechanism study and molecular design in controlled/"living―radical polymerization. Science China Chemistry, 2010, 53, 1605-1619.	8.2	6
153	Ironâ€Mediated ICAR ATRP of Styrene and Methyl Methacrylate in the Absence of Thermal Radical Initiator. Macromolecular Rapid Communications, 2010, 31, 275-280.	3.9	64
154	The First Example of Mainâ€Chain Cyclic Azobenzene Polymers. Macromolecular Rapid Communications, 2010, 31, 1791-1797.	3.9	36
155	Synthesizing and characterization of comb-shaped carbazole containing copolymer via combination of ring opening polymerization and nitroxide-mediated polymerization. Polymer, 2010, 51, 1947-1953.	3.8	15
156	Synthesis and characterization of azobenzene-functionalized poly(styrene)-b-poly(vinyl acetate) via the combination of RAFT and "click―chemistry. Polymer, 2010, 51, 3083-3090.	3.8	39
157	Synthesis and properties of crosslinked chiral nanoparticles via RAFT miniemulsion polymerization. Journal of Polymer Science Part A, 2010, 48, 1324-1331.	2.3	10
158	Airâ€ŧolerantly surfaceâ€initiated AGET ATRP mediated by iron catalyst from silica nanoparticles. Journal of Polymer Science Part A, 2010, 48, 2006-2015.	2.3	71
159	Modification of multiwall carbon nanotubes via soapâ€free emulsion polymerization of acrylonitrile. Journal of Polymer Science Part A, 2010, 48, 2057-2062.	2.3	18
160	Thermoâ€responsive fluorescent micelles from amphiphilic A ₃ B miktoarm star copolymers prepared via a combination of SET‣RP and RAFT polymerization. Journal of Polymer Science Part A, 2010, 48, 4268-4278.	2.3	39
161	Universal xanthateâ€mediated controlled free radical polymerizations of the "less activated―vinyl monomers. Journal of Polymer Science Part A, 2010, 48, 5206-5214.	2.3	28
162	Nitroxide-mediated polymerization of styrene in the presence of a novel trinitroxide. E-Polymers, 2010, 10, .	3.0	0

#	Article	IF	CITATIONS
163	Methacrylate copolymers with substituted azobenzene side groups: synthesis, characterization and photo-induced birefringence properties. E-Polymers, 2010, 10, .	3.0	1
164	Zero-valent Iron/RAFT Agent-Mediated Polymerization of Methyl Methacrylate at Ambient Temperature. Macromolecules, 2010, 43, 7979-7984.	4.8	35
165	Iron-Mediated AGET ATRP of Styrene in the Presence of Catalytic Amounts of Base. Macromolecules, 2010, 43, 9283-9290.	4.8	73
166	A Novel and Universal Route to SiO ₂ -Supported Organic/Inorganic Hybrid Noble Metal Nanomaterials via Surface RAFT Polymerization. Langmuir, 2010, 26, 14806-14813.	3.5	55
167	Facile synthesis of fluorescent ABA type amphiphilic triblock copolymers via RAFT polymerization and their aggregation behavior in a selective solvent. E-Polymers, 2009, 9, .	3.0	2
168	A Highly Active Ironâ€Based Catalyst System for the AGET ATRP of Styrene. Macromolecular Rapid Communications, 2009, 30, 543-547.	3.9	65
169	Preparation and characterization of poly(styrene)/metal composites via reversible addition-fragmentation chain transfer (RAFT) polymerization. Reactive and Functional Polymers, 2009, 69, 55-61.	4.1	13
170	Synthesis of Miktoarm Dumbbell-Like Amphiphilic Triblock Copolymer by Combination of Consecutive RAFT Polymerizations and ATRP. Polymer Bulletin, 2009, 62, 11-22.	3.3	12
171	Synthesis of fluorescent poly(methyl methacrylate) via AGET ATRP. Polymer Bulletin, 2009, 63, 355-364.	3.3	22
172	Iron(III)â€mediated AGET ATRP of styrene using tris(3,6â€dioxaheptyl)amine as a ligand. Journal of Polymer Science Part A, 2009, 47, 2002-2008.	2.3	61
173	Synthesis of miktoarm star amphiphilic block copolymers via combination of NMRP and ATRP and investigation on selfâ€assembly behaviors. Journal of Polymer Science Part A, 2009, 47, 6304-6315.	2.3	39
174	A combination of RAFT and "Click―chemistry techniques to synthesize polymeric europium complexes with selective fluorescence emission. Reactive and Functional Polymers, 2009, 69, 240-245.	4.1	31
175	RAFT Polymerization of Styrene Mediated by Ferrocenyl-Containing RAFT Agent and Properties of the Polymer Derived from Ferrocene. Macromolecules, 2009, 42, 3898-3905.	4.8	25
176	Surface Functionalization of Chitosan Nanospheres via Surface-Initiated AGET ATRP Mediated by Iron Catalyst in the Presence of Limited Amounts of Air. Industrial & Engineering Chemistry Research, 2009, 48, 6216-6223.	3.7	58
177	Preparation and Characterization of Linear and Miktoarm Star Side-Chain Liquid Crystalline block Copolymers with <i>p</i> -Methoxyazobenzene Moieties via a Combination of ATRP and ROP. Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 46, 876-885.	2.2	7
178	Cellulose Filter Paper with Antibacterial Activity from Surface-Initiated ATRP. Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 46, 989-996.	2.2	53
179	Synthesis and characterization of novel copolymer containing pyridylazo-2-naphthoxyl group via reversible addition–fragmentation chain transfer (RAFT) polymerization. Polymer, 2008, 49, 3048-3053.	3.8	12
180	Reversible addition–fragmentation chain transfer polymerizations of styrene with two novel trithiocarbonates as RAFT agents. Polymer, 2008, 49, 5431-5438.	3.8	11

#	Article	IF	CITATIONS
181	Synthesis and Characterizations of Triphenylamine End-Functionalized Polymers via Reversible Addition-Fragmentation Chain Transfer Polymerization. Polymer Bulletin, 2008, 61, 287-297.	3.3	8
182	Synthesis of tetrazoleâ€containing azo polymers with properties of photoâ€induced birefringence and surfaceâ€reliefâ€gratings via RAFT polymerization. Journal of Polymer Science Part A, 2008, 46, 682-691.	2.3	12
183	Synthesis of novel threeâ€arm star azo sideâ€chain liquid crystalline polymer via ATRP and photoinduced surface relief gratings. Journal of Polymer Science Part A, 2008, 46, 777-789.	2.3	29
184	Organic/inorganic hybrid nanospheres coated with palladium/P4VP shells from surfaceâ€initiated atom transfer radical polymerization. Journal of Polymer Science Part A, 2008, 46, 2119-2131.	2.3	19
185	A novel azo ontaining dithiocarbamate used for living radical polymerization of methyl acrylate and styrene. Journal of Polymer Science Part A, 2008, 46, 5626-5637.	2.3	17
186	Synthesis of azobenzeneâ€containing polymers via RAFT polymerization and investigation on intense fluorescence from aggregates of azobenzeneâ€containing amphiphilic diblock copolymers. Journal of Polymer Science Part A, 2008, 46, 5652-5662.	2.3	43
187	Synthesis and characterization of fluorescence endâ€labeled polystyrene via reversible additionâ€fragmentation chain transfer (RAFT) polymerization. Journal of Polymer Science Part A, 2008, 46, 6198-6205.	2.3	15
188	Synthesis of chiral amphiphilic diblock copolymers via consecutive RAFT polymerizations and their aggregation behavior in aqueous solution. Journal of Polymer Science Part A, 2008, 46, 7690-7701.	2.3	14
189	Iron(III)â€Mediated ATRP of Methyl Methacrylate Using Activators Generated by Electron Transfer. Macromolecular Chemistry and Physics, 2008, 209, 1705-1713.	2.2	77
190	AGET ATRP of methyl methacrylate catalyzed by FeCl3/iminodiacetic acid in the presence of air. Polymer, 2008, 49, 3054-3059.	3.8	111
191	Synthesis and self-assembly behaviors of three-armed amphiphilic block copolymers via RAFT polymerization. Polymer, 2008, 49, 4569-4575.	3.8	32
192	Synthesis of poly(vinyl acetate) with fluorescence via a combination of RAFT/MADIX and "click― chemistry. European Polymer Journal, 2008, 44, 1789-1795.	5.4	47
193	Synthesis and characterizations of 1,2,3-triazole containing polymers via reversible addition-fragmentation chain transfer (RAFT) polymerization. European Polymer Journal, 2008, 44, 1743-1751.	5.4	16
194	Synthesis of Amphiphilic ABCBAâ€Type Pentablock Copolymer from Consecutive ATRPs and Selfâ€Assembly in Aqueous Solution. Macromolecular Symposia, 2008, 261, 54-63.	0.7	9
195	Synthesis of Poly(methyl methacrylate) Labeled with Fluorescein Moieties via Atom Transfer Radical Polymerization. Journal of Macromolecular Science - Pure and Applied Chemistry, 2008, 45, 328-334.	2.2	8
196	Atom Transfer Radical Polymerization of Methyl Methacrylate High Efficiently Initiated by Azo-containing Iniferter. Journal of Macromolecular Science - Pure and Applied Chemistry, 2008, 45, 850-856.	2.2	5
197	Synthesis of Poly(methyl methacrylate) Labeled with Fluorescein Moieties via Atom Transfer Radical Polymerization. Journal of Macromolecular Science - Pure and Applied Chemistry, 2008, 45, 495-501.	2.2	2
198	Copolymerization of Nâ€Vinylcarbazole and Vinyl Acetate via Reversible Additionâ€Fragmentation Chain Transfer (RAFT) Polymerization. Macromolecular Symposia, 2008, 261, 46-53.	0.7	6

#	Article	IF	CITATIONS
199	Preparation of azobenzene-terminated polymers via reversible addition-fragmentation chain transfer (RAFT) polymerization. E-Polymers, 2008, 8, .	3.0	3
200	Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization of Vinyl Monomers Initiated by Poly(methyl methacrylate) Peroxide. E-Polymers, 2007, 7, .	3.0	0
201	Imidazoline Nitroxideâ€Mediated Radical Polymerization of Styrene. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007, 44, 41-46.	2.2	9
202	RAFT Polymerization of Styrene in the Presence of 2â€Nonylâ€benzoimidazoleâ€1â€carbodithioic Acid Benzyl Ester. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007, 44, 315-320.	2.2	8
203	Synthesis and Photoresponsive Behaviors of Well-Defined Azobenzene-Containing Polymers via RAFT Polymerization. Macromolecules, 2007, 40, 4809-4817.	4.8	59
204	Synthesis and photoinduced surfaceâ€relief grating of wellâ€defined azoâ€containing polymethacrylates via atom transfer radical polymerization. Journal of Applied Polymer Science, 2007, 106, 1234-1242.	2.6	10
205	Influence of the chemical structure of dithiocarbamates with different R groups on the reversible addition-fragmentation chain transfer polymerization. Journal of Applied Polymer Science, 2007, 103, 982-988.	2.6	14
206	"Livingâ€∤controlled polymerization of methyl acrylate mediated by dithiocarbamates under γ-ray irradiation. Journal of Applied Polymer Science, 2007, 103, 1769-1775.	2.6	11
207	2-oxo-tetrahydrofuran-3-yl 9H-carbazole-9-carbodithioate mediated reversible addition-fragmentation chain transfer (RAFT) polymerization. Journal of Applied Polymer Science, 2007, 104, 2913-2918.	2.6	4
208	Atom transfer radical polymerizations of methyl methacrylate and styrene with an iniferter reagent as the initiator. Journal of Applied Polymer Science, 2007, 106, 230-237.	2.6	17
209	A Novel Synthetic Method for Well-Defined Polymers Containing Benzotriazole and Diazobenzene Chromophores. Macromolecular Chemistry and Physics, 2007, 208, 1101-1109.	2.2	9
210	Reversible addition–fragmentation chain transfer polymerization of 7-(4-(acryloyloxy)butoxy)coumarin. Polymer, 2007, 48, 5859-5866.	3.8	20
211	Synthesis of dithiocarbamate bearing azobenzene group and use for RAFT polymerization of vinyl monomers. Journal of Polymer Science Part A, 2007, 45, 2886-2896.	2.3	15
212	Preparation, characterization, and chiral recognition of optically active polymers containing pendent chiral units via reversible additionâ€fragmentation chain transfer polymerization. Journal of Polymer Science Part A, 2007, 45, 3788-3797.	2.3	32
213	Synthesis of amphiphilic and thermosensitive graft copolymers with fluorescence P(Stâ€ <i>co</i> â€{pâ€CMS))â€ <i>g</i> â€PNIPAAM by combination of NMP and RAFT methods. Journal of Polym Science Part A, 2007, 45, 5318-5328.	e 2. 3	37
214	"Livingâ€∤controlled free radical polymerization of MMA in the presence of cobalt(II) 2â€ethylhexanoate: A switch from RAFT to ATRP mechanism. Journal of Polymer Science Part A, 2007, 45, 5722-5730.	2.3	32
215	Reversible addition–fragmentation chain transfer (RAFT) polymerization of styrene in the presence of oxygen. Polymer, 2007, 48, 4393-4400.	3.8	20
216	Microwave-assisted nitroxide-mediated miniemulsion polymerization of styrene. Radiation Physics and Chemistry, 2007, 76, 23-26.	2.8	36

#	Article	IF	CITATIONS
217	Modification of Poly(ether imide) Membranes via Surface-Initiated Atom Transfer Radical Polymerization. Macromolecules, 2006, 39, 1660-1663.	4.8	52
218	Synthesis and Characterization of Polymers Containing Azobenzene Chromophoric Group by ATRP. Journal of Macromolecular Science - Pure and Applied Chemistry, 2006, 43, 393-403.	2.2	7
219	New ligands for the Fe(III)-mediated reverse atom transfer radical polymerization of methyl methacrylate. Journal of Polymer Science Part A, 2006, 44, 2912-2921.	2.3	26
220	Thermal-initiated reversible addition–fragmentation chain transfer polymerization of methyl methacrylate in the presence of oxygen. Journal of Polymer Science Part A, 2006, 44, 3343-3354.	2.3	60
221	Reversible addition–fragmentation chain transfer polymerization of styrene under microwave irradiation. Journal of Polymer Science Part A, 2006, 44, 6810-6816.	2.3	55
222	Iron-mediated atom transfer radical polymerization of styrene with tris(3,6-dioxaheptyl) amine as a ligand. Journal of Polymer Science Part A, 2006, 44, 483-489.	2.3	33
223	Preparation and characterization of optically active polymers containing pendent and terminal chiral units via atom transfer radical polymerization. Journal of Polymer Science Part A, 2006, 44, 1502-1513.	2.3	15
224	Thermal polymerization of methyl (meth)acrylate via reversible addition-fragmentation chain transfer (RAFT) process. Polymer, 2006, 47, 6970-6977.	3.8	25
225	Microwave-assisted nitroxide-mediated radical polymerization of styrene. Radiation Physics and Chemistry, 2006, 75, 253-258.	2.8	49
226	Reversible Addition Fragmentation Chain Transfer (RAFT) Emulsion Polymerization of Methyl Methacrylate via a Plasma-initiated Process. Polymer Bulletin, 2006, 56, 539-548.	3.3	13
227	Controlled/living radical polymerization of methyl methacrylate using Î ³ -radiation as an initiation source. Radiation Physics and Chemistry, 2006, 75, 485-492.	2.8	18
228	Synthesis of 1,3-benzodioxole end-functionalized polymers via reversible addition–fragmentation chain transfer polymerization. Journal of Applied Polymer Science, 2006, 99, 3535-3539.	2.6	10
229	New dinitroxide for stable free radical polymerization of styrene. Journal of Applied Polymer Science, 2006, 100, 1137-1145.	2.6	5
230	Atom transfer radical polymerization of styrene with 2-(1-bromoethyl)-anthraquinone as an initiator. Journal of Applied Polymer Science, 2006, 102, 2081-2085.	2.6	4
231	Synthesis of Well-defined Carbazole Group Labelled Polymer via RAFT Polymerization and Study on the Optical Properties. E-Polymers, 2006, 6, .	3.0	3
232	POLYMER MICROSPHERES WITH PERMANENT ANTIBACTERIAL SURFACE FROM SURFACE-INITIATED ATOM TRANSFER RADICAL POLYMERIZATION OF 4-VINYLPYRIDINE AND QUATERNIZATION. Surface Review and Letters, 2006, 13, 313-318.	1.1	23
233	Atom Transfer Radical Polymerization of Methyl Methacrylate with α,α,α′,α′â€ī etrachloroxylene as an Initiator. Journal of Macromolecular Science - Pure and Applied Chemistry, 2006, 43, 1445-1458.	2.2	0
234	Atom transfer radical polymerization of styrene under pulsed microwave irradiation. Radiation Physics and Chemistry, 2005, 72, 695-701.	2.8	53

#	Article	IF	CITATIONS
235	ATRP and their self-assembly in selective solvents. Polymer, 2005, 46, 7563-7571.	3.8	38
236	Synthesis and characterization of poly(vinyl chloride-co-vinyl acetate)-graft-poly[(meth)acrylates] by atom transfer radical polymerization. Journal of Applied Polymer Science, 2005, 96, 183-189.	2.6	24
237	Homogeneous reverse atom transfer radical polymerization of glycidyl methacrylate and ring-opening reaction of the pendant oxirane ring. Polymer, 2005, 46, 12716-12721.	3.8	41
238	Polymerization of styrene with tetramethylthiuram disulfide as an initiator in the presence of 2,2,6,6-tetramethyl-1-piperidinyloxy. Journal of Polymer Science Part A, 2005, 43, 543-551.	2.3	5
239	Polymer Microspheres with Permanent Antibacterial Surface from Surface-Initiated Atom Transfer Radical Polymerization. Industrial & Engineering Chemistry Research, 2005, 44, 7098-7104.	3.7	140
240	Dual-Brush-Type Amphiphilic Triblock Copolymer with Intact Epoxide Functional Groups from Consecutive RAFT Polymerizations and ATRP. Macromolecules, 2005, 38, 7187-7192.	4.8	70
241	Synthesis of a Wellâ€Defined Naphthaleneâ€Labeled Polystyrene via Atom Transfer Radical Polymerization. Journal of Macromolecular Science - Pure and Applied Chemistry, 2005, 42, 341-349.	2.2	8
242	Brush-Type Amphiphilic Diblock Copolymers from "Livingâ€ / Controlled Radical Polymerizations and Their Aggregation Behavior. Langmuir, 2005, 21, 7180-7185.	3.5	83
243	Atom transfer radical polymerization of hexadecyl acrylate using CuSCN as the catalyst. Macromolecular Research, 2004, 12, 32-37.	2.4	12
244	Controlled/"living―radical polymerization of methyl methacrylate using AIBN as the initiator under microwave irradiation. Radiation Physics and Chemistry, 2004, 69, 129-135.	2.8	27
245	Controlled/â€~living' radical polymerization of methyl methacrylate with p -TsCl/CuBr/BPY initiating system under microwave irradiation. Polymer International, 2004, 53, 357-363.	3.1	26
246	Atom-transfer radical polymerization of methyl methacrylate with ?,??-dichloroxylene/CuCl/N,N,N?,N?,N?-pentamethyldiethylenetriamine initiation system under microwave irradiation. Journal of Applied Polymer Science, 2004, 92, 2189-2195.	2.6	31
247	Synthesis of poly(octadecyl acrylate-b-styrene-b-octadecyl acrylate) triblock copolymer by atom transfer radical polymerization. Journal of Applied Polymer Science, 2004, 93, 1539-1545.	2.6	29
248	Reverse Atom Transfer Radical Polymerization of Methyl Methacrylate using a New Catalyst, Copper(II)N,N′-Butyldithiocarbamate. Macromolecular Chemistry and Physics, 2004, 205, 806-813.	2.2	14
249	Plasma-Initiated Controlled/Living Radical Polymerization of Methyl Methacrylate in the Presence of 2-Cyanoprop-2-yl 1-dithionaphthalate(CPDN). Macromolecular Rapid Communications, 2004, 25, 818-824.	3.9	40
250	Synthesis of ABA triblock copolymer of poly(potassium acrylate-styrene-potassium acrylate) by atom transfer radical polymerization and the self-assembly in selective solvents. Polymer, 2004, 45, 6525-6532.	3.8	15
251	Reversible Addition Fragmentation Chain Transfer Polymerization of Isobutyl Methacrylate. Journal of Macromolecular Science - Pure and Applied Chemistry, 2004, 41, 1059-1070.	2.2	6
252	Atom Transfer Radical Polymerization of Styrene Using Various Onium Salts as Ligands. Journal of Macromolecular Science - Pure and Applied Chemistry, 2004, 41, 487-499.	2.2	8

#	Article	IF	CITATIONS
253	Reverse Atom Transfer Radical Polymerization of Styrene Initiated by Tetramethylthiuram Disulfide/CuSCN/N,N,N′,N″,N″â€Pentamethyldiethylenetriamine in the Presence of Acetonitrile. Journal of Macromolecular Science - Pure and Applied Chemistry, 2004, 41, 49-61.	2.2	8
254	RATRP of MMA in AIBN/FeC1 3 /PPh 3 initiation system under microwave irradiation. Polymer Bulletin, 2003, 49, 363-369.	3.3	25
255	Atom transfer radical bulk polymerization of methyl methacrylate under microwave irradiation. Journal of Applied Polymer Science, 2003, 88, 1787-1793.	2.6	52
256	Emulsion polymerization of styrene under pulsed microwave irradiation. Journal of Applied Polymer Science, 2003, 89, 28-35.	2.6	33
257	Atom transfer radical polymerization of lauryl methacrylate. Journal of Applied Polymer Science, 2003, 90, 1117-1125.	2.6	46
258	Living/controlled radical autopolymerization of styrene in the presence of CuCl2 and 2,2?-bipyridine. Journal of Applied Polymer Science, 2003, 90, 1532-1538.	2.6	8
259	Emulsion polymerization of methyl methacrylate under pulsed microwave irradiation. European Polymer Journal, 2003, 39, 1187-1193.	5.4	42
260	Atom transfer radical polymerization of n-octyl acrylate under microwave irradiation. European Polymer Journal, 2003, 39, 1349-1353.	5.4	35
261	Reverse atom transfer radical polymerization of methyl methacrylate with FeCl3/pyromellitic acid. European Polymer Journal, 2003, 39, 2161-2165.	5.4	46
262	Atom transfer radical polymerization of methyl methacrylate with low concentration of initiating system under microwave irradiation. Polymer, 2003, 44, 2243-2247.	3.8	64
263	Homogeneous Atom Transfer Radical Polymerization of Methyl Methacrylate Under Pulsed Microwave Irradiation. Journal of Macromolecular Science - Pure and Applied Chemistry, 2003, 40, 1157-1171.	2.2	23
264	Homogeneous Solution Reverse Atom Transfer Radical Polymerization of Methyl Methacrylate. Journal of Macromolecular Science - Pure and Applied Chemistry, 2003, 40, 371-385.	2.2	10
265	Reversible Addition–Fragmentation Chainâ€Transfer Polymerization of Octadecyl Acrylate. Journal of Macromolecular Science - Pure and Applied Chemistry, 2003, 40, 963-975.	2.2	17
266	Atom Transfer Radical Polymerization of Methyl Methacrylate under Microwave Irradiation. Polymer Journal, 2003, 35, 399-401.	2.7	11
267	Plasma-induced copolymerization of hydrochloride ofN,N-dimethylaminoethyl methacrylate and acrylamide. Journal of Applied Polymer Science, 2002, 84, 729-734.	2.6	4
268	Reverse atom transfer radical solution polymerization of methyl methacrylate under pulsed microwave irradiation. Journal of Polymer Science Part A, 2002, 40, 3823-3834.	2.3	50
269	Study on controlled free-radical polymerization in the presence of 2-cyanoprop-2-yl 1-dithionaphthalate (CPDN). Polymer, 2002, 43, 7037-7042.	3.8	85