Zhenping Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1615534/publications.pdf

Version: 2024-02-01

269 papers

7,524 citations

57758 44 h-index 102487 66 g-index

271 all docs

271 docs citations

times ranked

271

5653 citing authors

#	Article	IF	CITATIONS
1	A Selfâ€Assembled Albuminâ€Based Nanoprobe for In Vivo Ratiometric Photoacoustic pH Imaging. Advanced Materials, 2015, 27, 6820-6827.	21.0	244
2	Metal-free photoinduced electron transfer–atom transfer radical polymerization (PET–ATRP) via a visible light organic photocatalyst. Polymer Chemistry, 2016, 7, 689-700.	3.9	217
3	Near-infrared dye bound albumin with separated imaging and therapy wavelength channels for imaging-guided photothermal therapy. Biomaterials, 2014, 35, 8206-8214.	11.4	210
4	Albumin-NIR dye self-assembled nanoparticles for photoacoustic pH imaging and pH-responsive photothermal therapy effective for large tumors. Biomaterials, 2016, 98, 23-30.	11.4	182
5	Polymer Microspheres with Permanent Antibacterial Surface from Surface-Initiated Atom Transfer Radical Polymerization. Industrial & Engineering Chemistry Research, 2005, 44, 7098-7104.	3.7	140
6	Iron-Mediated ICAR ATRP of Methyl Methacrylate. Macromolecules, 2011, 44, 3233-3239.	4.8	124
7	AGET ATRP of methyl methacrylate catalyzed by FeCl3/iminodiacetic acid in the presence of air. Polymer, 2008, 49, 3054-3059.	3.8	111
8	Activators generated by electron transfer for atom transfer radical polymerization: recent advances in catalyst and polymer chemistry. Polymer Chemistry, 2012, 3, 2685.	3.9	108
9	Study on controlled free-radical polymerization in the presence of 2-cyanoprop-2-yl 1-dithionaphthalate (CPDN). Polymer, 2002, 43, 7037-7042.	3.8	85
10	Brush-Type Amphiphilic Diblock Copolymers from "Livingâ€∮Controlled Radical Polymerizations and Their Aggregation Behavior. Langmuir, 2005, 21, 7180-7185.	3.5	83
11	Recent Progress on Transition Metal Catalyst Separation and Recycling in ATRP. Macromolecular Rapid Communications, 2015, 36, 1702-1721.	3.9	81
12	Metalâ€Free Atom Transfer Radical Polymerization of Methyl Methacrylate with ppm Level of Organic Photocatalyst. Macromolecular Rapid Communications, 2017, 38, 1600461.	3.9	78
13	Iron(III)â€Mediated ATRP of Methyl Methacrylate Using Activators Generated by Electron Transfer. Macromolecular Chemistry and Physics, 2008, 209, 1705-1713.	2.2	77
14	Bifunctional Nanoparticles with Fluorescence and Magnetism via Surface-Initiated AGET ATRP Mediated by an Iron Catalyst. Langmuir, 2011, 27, 12684-12692.	3.5	77
15	Iron-Mediated AGET ATRP of Styrene in the Presence of Catalytic Amounts of Base. Macromolecules, 2010, 43, 9283-9290.	4.8	73
16	Airâ€tolerantly surfaceâ€initiated AGET ATRP mediated by iron catalyst from silica nanoparticles. Journal of Polymer Science Part A, 2010, 48, 2006-2015.	2.3	71
17	Dual-Brush-Type Amphiphilic Triblock Copolymer with Intact Epoxide Functional Groups from Consecutive RAFT Polymerizations and ATRP. Macromolecules, 2005, 38, 7187-7192.	4.8	70
18	Photosensitizer cross-linked nano-micelle platform for multimodal imaging guided synergistic photothermal/photodynamic therapy. Nanoscale, 2016, 8, 15323-15339.	5.6	70

#	Article	IF	CITATIONS
19	Atom transfer radical polymerization of hydrophilic monomers and its applications. Polymer Chemistry, 2013, 4, 2919.	3.9	66
20	A Highly Active Ironâ€Based Catalyst System for the AGET ATRP of Styrene. Macromolecular Rapid Communications, 2009, 30, 543-547.	3.9	65
21	Atom transfer radical polymerization of methyl methacrylate with low concentration of initiating system under microwave irradiation. Polymer, 2003, 44, 2243-2247.	3.8	64
22	Ironâ€Mediated ICAR ATRP of Styrene and Methyl Methacrylate in the Absence of Thermal Radical Initiator. Macromolecular Rapid Communications, 2010, 31, 275-280.	3.9	64
23	Photocontrolled Iodineâ€Mediated Reversibleâ€Deactivation Radical Polymerization: Solution Polymerization of Methacrylates by Irradiation with NIR LED Light. Angewandte Chemie - International Edition, 2020, 59, 3910-3916.	13.8	64
24	lodine-mediated reversible-deactivation radical polymerization: a powerful strategy for polymer synthesis. Polymer Chemistry, 2019, 10, 2504-2515.	3.9	63
25	Iron(III)â€mediated AGET ATRP of styrene using tris(3,6â€dioxaheptyl)amine as a ligand. Journal of Polymer Science Part A, 2009, 47, 2002-2008.	2.3	61
26	Thermal-initiated reversible addition–fragmentation chain transfer polymerization of methyl methacrylate in the presence of oxygen. Journal of Polymer Science Part A, 2006, 44, 3343-3354.	2.3	60
27	Synthesis and Photoresponsive Behaviors of Well-Defined Azobenzene-Containing Polymers via RAFT Polymerization. Macromolecules, 2007, 40, 4809-4817.	4.8	59
28	Surface Functionalization of Chitosan Nanospheres via Surface-Initiated AGET ATRP Mediated by Iron Catalyst in the Presence of Limited Amounts of Air. Industrial & Engineering Chemistry Research, 2009, 48, 6216-6223.	3.7	58
29	Reversible addition–fragmentation chain transfer polymerization of styrene under microwave irradiation. Journal of Polymer Science Part A, 2006, 44, 6810-6816.	2.3	55
30	A Novel and Universal Route to SiO ₂ -Supported Organic/Inorganic Hybrid Noble Metal Nanomaterials via Surface RAFT Polymerization. Langmuir, 2010, 26, 14806-14813.	3.5	55
31	Developing a Synthetic Approach with Thermoregulated Phase-Transfer Catalysis: Facile Access to Metal-Mediated Living Radical Polymerization of Methyl Methacrylate in Aqueous/Organic Biphasic System. Macromolecules, 2013, 46, 2060-2066.	4.8	55
32	Self-assembly of BODIPY based pH-sensitive near-infrared polymeric micelles for drug controlled delivery and fluorescence imaging applications. Nanoscale, 2015, 7, 16399-16416.	5.6	54
33	Atom transfer radical polymerization of styrene under pulsed microwave irradiation. Radiation Physics and Chemistry, 2005, 72, 695-701.	2.8	53
34	Cellulose Filter Paper with Antibacterial Activity from Surface-Initiated ATRP. Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 46, 989-996.	2.2	53
35	Atom transfer radical bulk polymerization of methyl methacrylate under microwave irradiation. Journal of Applied Polymer Science, 2003, 88, 1787-1793.	2.6	52
36	Modification of Poly(ether imide) Membranes via Surface-Initiated Atom Transfer Radical Polymerization. Macromolecules, 2006, 39, 1660-1663.	4.8	52

3

#	Article	lF	Citations
37	Reverse atom transfer radical solution polymerization of methyl methacrylate under pulsed microwave irradiation. Journal of Polymer Science Part A, 2002, 40, 3823-3834.	2.3	50
38	Multistimuli-responsive hybrid nanoparticles with magnetic core and thermoresponsive fluorescence-labeled shell via surface-initiated RAFT polymerization. Soft Matter, 2011, 7, 6958.	2.7	50
39	Microwave-assisted nitroxide-mediated radical polymerization of styrene. Radiation Physics and Chemistry, 2006, 75, 253-258.	2.8	49
40	Synthesis of poly(vinyl acetate) with fluorescence via a combination of RAFT/MADIX and "click― chemistry. European Polymer Journal, 2008, 44, 1789-1795.	5.4	47
41	Atom transfer radical polymerization of lauryl methacrylate. Journal of Applied Polymer Science, 2003, 90, 1117-1125.	2.6	46
42	Reverse atom transfer radical polymerization of methyl methacrylate with FeCl3/pyromellitic acid. European Polymer Journal, 2003, 39, 2161-2165.	5.4	46
43	Facile Ironâ€Mediated AGET ATRP for Waterâ€Soluble Poly(ethylene glycol) Monomethyl Ether Methacrylate in Water. Macromolecular Rapid Communications, 2012, 33, 1067-1073.	3.9	46
44	Visible-light-induced living radical polymerization using in situ bromine-iodine transformation as an internal boost. Polymer Chemistry, 2017, 8, 2538-2551.	3.9	46
45	Catalyst-free iodine-mediated living radical polymerization under irradiation over a wide visible-light spectral scope. Polymer Chemistry, 2016, 7, 3576-3588.	3.9	44
46	Synthesis of azobenzeneâ€containing polymers via RAFT polymerization and investigation on intense fluorescence from aggregates of azobenzeneâ€containing amphiphilic diblock copolymers. Journal of Polymer Science Part A, 2008, 46, 5652-5662.	2.3	43
47	An atom transfer radical polymerization system: catalyzed by an iron catalyst in PEG-400. Green Chemistry, 2015, 17, 271-278.	9.0	43
48	The in situ formation of nanoparticles via RAFT polymerization-induced self-assembly in a continuous tubular reactor. Polymer Chemistry, 2017, 8, 1495-1506.	3.9	43
49	Emulsion polymerization of methyl methacrylate under pulsed microwave irradiation. European Polymer Journal, 2003, 39, 1187-1193.	5.4	42
50	Homogeneous reverse atom transfer radical polymerization of glycidyl methacrylate and ring-opening reaction of the pendant oxirane ring. Polymer, 2005, 46, 12716-12721.	3.8	41
51	Facile "Living―Radical Polymerization of Methyl Methacrylate in the Presence of Iniferter Agents: Homogeneous and Highly Efficient Catalysis from Copper(II) Acetate. Macromolecular Rapid Communications, 2014, 35, 1332-1339.	3.9	41
52	Plasma-Initiated Controlled/Living Radical Polymerization of Methyl Methacrylate in the Presence of 2-Cyanoprop-2-yl 1-dithionaphthalate(CPDN). Macromolecular Rapid Communications, 2004, 25, 818-824.	3.9	40
53	Synthesis of miktoarm star amphiphilic block copolymers via combination of NMRP and ATRP and investigation on selfâ€assembly behaviors. Journal of Polymer Science Part A, 2009, 47, 6304-6315.	2.3	39
54	Synthesis and characterization of azobenzene-functionalized poly(styrene)-b-poly(vinyl acetate) via the combination of RAFT and "click―chemistry. Polymer, 2010, 51, 3083-3090.	3.8	39

#	Article	IF	Citations
55	Thermoâ€responsive fluorescent micelles from amphiphilic A ₃ B miktoarm star copolymers prepared via a combination of SETâ€LRP and RAFT polymerization. Journal of Polymer Science Part A, 2010, 48, 4268-4278.	2.3	39
56	Alumina additives for fast ironâ€mediated AGET ATRP of MMA using onium salt as ligand. Journal of Polymer Science Part A, 2011, 49, 3970-3979.	2.3	39
57	Thermo-regulated phase separable catalysis (TPSC)-based atom transfer radical polymerization in a thermo-regulated ionic liquid. Chemical Communications, 2014, 50, 9266-9269.	4.1	39
58	ATRP and their self-assembly in selective solvents. Polymer, 2005, 46, 7563-7571.	3.8	38
59	Synthesis of amphiphilic and thermosensitive graft copolymers with fluorescence $P(Stae < i > co < i > ae (pae CMS))ae < i > g < i > ae PNIPAAM by combination of NMP and RAFT methods. Journal of Polym Science Part A, 2007, 45, 5318-5328.$	ne 2. 3	37
60	Catalytic amounts of sodium hydroxide as additives for iron-mediated AGET ATRP of MMA. Polymer Chemistry, 2011, 2, 2385.	3.9	37
61	Microwave-assisted nitroxide-mediated miniemulsion polymerization of styrene. Radiation Physics and Chemistry, 2007, 76, 23-26.	2.8	36
62	The First Example of Mainâ€Chain Cyclic Azobenzene Polymers. Macromolecular Rapid Communications, 2010, 31, 1791-1797.	3.9	36
63	Photocontrolled Iodine-Mediated Green Reversible-Deactivation Radical Polymerization of Methacrylates: Effect of Water in the Polymerization System. ACS Macro Letters, 2019, 8, 1419-1425.	4.8	36
64	Atom transfer radical polymerization of n-octyl acrylate under microwave irradiation. European Polymer Journal, 2003, 39, 1349-1353.	5.4	35
65	Zero-valent Iron/RAFT Agent-Mediated Polymerization of Methyl Methacrylate at Ambient Temperature. Macromolecules, 2010, 43, 7979-7984.	4.8	35
66	Rateâ€enhanced ATRP in the presence of catalytic amounts of base: An example of ironâ€mediated AGET ATRP of MMA. Journal of Polymer Science Part A, 2011, 49, 3980-3987.	2.3	35
67	Facile Ironâ€Mediated Dispersantâ€Free Suspension Polymerization of Methyl Methacrylate via Reverse ATRP in Water. Macromolecular Rapid Communications, 2013, 34, 1747-1754.	3.9	35
68	Fabrication of self-healing hydrogels with surface functionalized microcapsules from stellate mesoporous silica. Polymer Chemistry, 2019, 10, 503-511.	3.9	35
69	Synthesis and Aggregation Behaviors of Nonlinear Multiresponsive, Multihydrophilic Block Copolymers. Macromolecules, 2011, 44, 3366-3373.	4.8	34
70	Organoselenium compounds: development of a universal "living―free radical polymerization mediator. Polymer Chemistry, 2013, 4, 3453.	3.9	34
71	Photoâ€Controlled Polymerizationâ€Induced Selfâ€Assembly (Photoâ€PISA): A Novel Strategy Using In Situ Bromineâ€Iodine Transformation Living Radical Polymerization. Macromolecular Rapid Communications, 2019, 40, e1800327.	3.9	34
72	Emulsion polymerization of styrene under pulsed microwave irradiation. Journal of Applied Polymer Science, 2003, 89, 28-35.	2.6	33

#	Article	IF	CITATIONS
73	Iron-mediated atom transfer radical polymerization of styrene with tris(3,6-dioxaheptyl) amine as a ligand. Journal of Polymer Science Part A, 2006, 44, 483-489.	2.3	33
74	Magnetic nanomaterials with near-infrared pH-activatable fluorescence via iron-catalyzed AGET ATRP for tumor acidic microenvironment imaging. Journal of Materials Chemistry B, 2015, 3, 2786-2800.	5.8	33
75	Straightforward catalyst/solvent-free iodine-mediated living radical polymerization of functional monomers driven by visible light irradiation. Chemical Communications, 2016, 52, 10850-10853.	4.1	33
76	Preparation, characterization, and chiral recognition of optically active polymers containing pendent chiral units via reversible additionâ€fragmentation chain transfer polymerization. Journal of Polymer Science Part A, 2007, 45, 3788-3797.	2.3	32
77	"Livingâ€∤controlled free radical polymerization of MMA in the presence of cobalt(II) 2â€ethylhexanoate: A switch from RAFT to ATRP mechanism. Journal of Polymer Science Part A, 2007, 45, 5722-5730.	2.3	32
78	Synthesis and self-assembly behaviors of three-armed amphiphilic block copolymers via RAFT polymerization. Polymer, 2008, 49, 4569-4575.	3.8	32
79	New seleniumâ€based iniferter agent for living free radical polymerization of styrene under UV irradiation. Journal of Polymer Science Part A, 2012, 50, 2211-2218.	2.3	32
80	A surfactant-free emulsion RAFT polymerization of methyl methacrylate in a continuous tubular reactor. Polymer Chemistry, 2015, 6, 1937-1943.	3.9	32
81	Atom-transfer radical polymerization of methyl methacrylate with ?,??-dichloroxylene/CuCl/N,N,N?,N?,N?-pentamethyldiethylenetriamine initiation system under microwave irradiation. Journal of Applied Polymer Science, 2004, 92, 2189-2195.	2.6	31
82	A combination of RAFT and "Click―chemistry techniques to synthesize polymeric europium complexes with selective fluorescence emission. Reactive and Functional Polymers, 2009, 69, 240-245.	4.1	31
83	A novel approach to modify poly(vinylidene fluoride) via ironâ€mediated atom transfer radical polymerization using activators generated by electron transfer. Journal of Polymer Science Part A, 2011, 49, 2315-2324.	2.3	31
84	Lightâ€driven and aggregationâ€induced emission from sideâ€chain azoindazole polymers. Journal of Polymer Science Part A, 2011, 49, 4911-4920.	2.3	31
85	Synthesis of poly(octadecyl acrylate-b-styrene-b-octadecyl acrylate) triblock copolymer by atom transfer radical polymerization. Journal of Applied Polymer Science, 2004, 93, 1539-1545.	2.6	29
86	Synthesis of novel threeâ€arm star azo sideâ€chain liquid crystalline polymer via ATRP and photoinduced surface relief gratings. Journal of Polymer Science Part A, 2008, 46, 777-789.	2.3	29
87	Universal xanthateâ€mediated controlled free radical polymerizations of the "less activated†vinyl monomers. Journal of Polymer Science Part A, 2010, 48, 5206-5214.	2.3	28
88	Synthesis and characters of hyperbranched poly(vinyl acetate) by RAFT polymeraztion. European Polymer Journal, 2011, 47, 1912-1922.	5.4	28
89	Ironâ€mediated AGET ATRP of methyl methacrylate using metal wire as reducing agent. Journal of Polymer Science Part A, 2012, 50, 2244-2253.	2.3	28
90	A versatile Fe ₃ O ₄ based platform via iron-catalyzed AGET ATRP: towards various multifunctional nanomaterials. Polymer Chemistry, 2014, 5, 638-645.	3.9	28

#	Article	IF	CITATIONS
91	Controlled/"living―radical polymerization of methyl methacrylate using AIBN as the initiator under microwave irradiation. Radiation Physics and Chemistry, 2004, 69, 129-135.	2.8	27
92	A Highly Efficient Ironâ€Mediated AGET ATRP of Methyl Methacrylate Using Fe(0) Powder as the Reducing Agent. Macromolecular Chemistry and Physics, 2011, 212, 999-1006.	2.2	27
93	Visible light controlled aqueous RAFT continuous flow polymerization with oxygen tolerance. Polymer Chemistry, 2019, 10, 2064-2072.	3.9	27
94	Controlled/†living' radical polymerization of methyl methacrylate with p -TsCl/CuBr/BPY initiating system under microwave irradiation. Polymer International, 2004, 53, 357-363.	3.1	26
95	New ligands for the Fe(III)-mediated reverse atom transfer radical polymerization of methyl methacrylate. Journal of Polymer Science Part A, 2006, 44, 2912-2921.	2.3	26
96	Anticoagulant Surface of 316 L Stainless Steel Modified by Surface-Initiated Atom Transfer Radical Polymerization. ACS Applied Materials & Samp; Interfaces, 2011, 3, 1675-1680.	8.0	26
97	Copper(0)-Mediated Living Radical Copolymerization of Styrene and Methyl Methacrylate at Ambient Temperature. Macromolecules, 2011, 44, 3227-3232.	4.8	26
98	Atom transfer radical polymerization of methyl methacrylate with a thermo-responsive ligand: construction of thermoregulated phase-transfer catalysis in an aqueous–organic biphasic system. Polymer Chemistry, 2013, 4, 2876.	3.9	26
99	Fe(<scp>iii</scp>)-mediated ICAR ATRP in a p-xylene/PEG-200 biphasic system: facile and highly efficient separation and recycling of an iron catalyst. Polymer Chemistry, 2015, 6, 6616-6622.	3.9	26
100	Step Transferâ€Addition and Radicalâ€Termination (START) Polymerization of α,ï‰â€Unconjugated Dienes under Irradiation of Blue LED Light. Macromolecular Rapid Communications, 2017, 38, 1600587.	3 . 9	26
101	RATRP of MMA in AlBN/FeC1 3 /PPh 3 initiation system under microwave irradiation. Polymer Bulletin, 2003, 49, 363-369.	3.3	25
102	Thermal polymerization of methyl (meth)acrylate via reversible addition-fragmentation chain transfer (RAFT) process. Polymer, 2006, 47, 6970-6977.	3.8	25
103	RAFT Polymerization of Styrene Mediated by Ferrocenyl-Containing RAFT Agent and Properties of the Polymer Derived from Ferrocene. Macromolecules, 2009, 42, 3898-3905.	4.8	25
104	Fe(III)-catalyzed AGET ATRP of styrene using triphenyl phosphine as ligand. Polymer Bulletin, 2010, 64, 233-244.	3.3	25
105	Synthesis and characterization of poly(vinyl chloride-co-vinyl acetate)-graft-poly[(meth)acrylates] by atom transfer radical polymerization. Journal of Applied Polymer Science, 2005, 96, 183-189.	2.6	24
106	Copper(0)â€mediated living radical polymerization of acrylonitrile at room temperature. Journal of Polymer Science Part A, 2011, 49, 1183-1189.	2.3	24
107	AGET ATRP of waterâ€soluble PEGMA: Fast living radical polymerization mediated by iron catalyst. Journal of Polymer Science Part A, 2012, 50, 2194-2200.	2.3	24
108	A highly active homogeneous ICAR ATRP of methyl methacrylate using ppm levels of organocopper catalyst. Polymer Chemistry, 2013, 4, 3725.	3.9	24

#	Article	IF	CITATIONS
109	Synthesis of high molecular weight and narrow molecular weight distribution poly(acrylonitrile) via RAFT polymerization. Journal of Polymer Science Part A, 2013, 51, 1197-1204.	2.3	24
110	Iron-Mediated Homogeneous ICAR ATRP of Methyl Methacrylate under ppm Level Organometallic Catalyst Iron(III) Acetylacetonate. Polymers, 2016, 8, 29.	4.5	24
111	Homogeneous Atom Transfer Radical Polymerization of Methyl Methacrylate Under Pulsed Microwave Irradiation. Journal of Macromolecular Science - Pure and Applied Chemistry, 2003, 40, 1157-1171.	2.2	23
112	POLYMER MICROSPHERES WITH PERMANENT ANTIBACTERIAL SURFACE FROM SURFACE-INITIATED ATOM TRANSFER RADICAL POLYMERIZATION OF 4-VINYLPYRIDINE AND QUATERNIZATION. Surface Review and Letters, 2006, 13, 313-318.	1.1	23
113	Dimanganese decacarbonyl/2-cyanoprop-2-yl-1-dithionaphthalate: toward sunlight induced RAFT polymerization of MMA. Polymer Chemistry, 2014, 5, 4641-4648.	3.9	23
114	Highly Active ppm Level Organic Copper Catalyzed Photoâ€Induced ICAR ATRP of Methyl Methacrylate. Macromolecular Rapid Communications, 2014, 35, 1879-1885.	3.9	23
115	ICAR ATRP of Acrylonitrile under Ambient and High Pressure. Polymers, 2016, 8, 59.	4.5	23
116	Highly Efficient and Facile Photocatalytic Recycling System Suitable for ICAR ATRP of Hydrophilic Monomers. Macromolecular Rapid Communications, 2016, 37, 1337-1343.	3.9	23
117	Synthesis of fluorescent poly(methyl methacrylate) via AGET ATRP. Polymer Bulletin, 2009, 63, 355-364.	3.3	22
118	Facile Fabrication of Biocompatible and Tunable Multifunctional Nanomaterials via Iron-Mediated Atom Transfer Radical Polymerization with Activators Generated by Electron Transfer. ACS Applied Materials & Diterfaces, 2013, 5, 9663-9669.	8.0	22
119	Cu(II)â€Mediated Atom Transfer Radical Polymerization of Methyl Methacrylate via a Strategy of Thermoâ€Regulated Phaseâ€Separable Catalysis in a Liquid/Liquid Biphasic System: Homogeneous Catalysis, Facile Heterogeneous Separation, and Recycling. Macromolecular Rapid Communications, 2014, 35, 1615-1621.	3.9	22
120	Bifunctional nanoparticles with magnetism and NIR fluorescence: controlled synthesis from combination of AGET ATRP and †click' reaction. Nanotechnology, 2014, 25, 045602.	2.6	21
121	Insight into the polymerization mechanism of photoinduced step transfer-addition & mp; radical-termination (START) polymerizations. Polymer Chemistry, 2017, 8, 3910-3920.	3.9	21
122	Construction of dual-functional polymer nanomaterials with near-infrared fluorescence imaging and polymer prodrug by RAFT-mediated aqueous dispersion polymerization. Nanoscale, 2018, 10, 10277-10287.	5.6	21
123	Reversible addition–fragmentation chain transfer polymerization of 7-(4-(acryloyloxy)butoxy)coumarin. Polymer, 2007, 48, 5859-5866.	3.8	20
124	Reversible addition–fragmentation chain transfer (RAFT) polymerization of styrene in the presence of oxygen. Polymer, 2007, 48, 4393-4400.	3.8	20
125	Modification of SEBS rubber via iron-mediated AGET ATRP in the presence of limited amounts of air. Reactive and Functional Polymers, 2011, 71, 634-640.	4.1	20
126	Ligandâ€free Cu(0)â€mediated controlled radical polymerization of methyl methacrylate at ambient temperature. Journal of Polymer Science Part A, 2012, 50, 711-719.	2.3	20

#	Article	IF	CITATIONS
127	Diffusion-Regulated Phase-Transfer Catalysis for Atom Transfer Radical Polymerization of Methyl Methacrylate in an Aqueous/Organic Biphasic System. Macromolecular Rapid Communications, 2015, 36, 538-546.	3.9	20
128	A sustainable photocontrolled ATRP strategy: facile separation and recycling of a visible-light-mediated catalyst <i>fac</i> -[Ir(ppy) ₃]. Polymer Chemistry, 2018, 9, 584-592.	3.9	20
129	Organic/inorganic hybrid nanospheres coated with palladium/P4VP shells from surfaceâ€initiated atom transfer radical polymerization. Journal of Polymer Science Part A, 2008, 46, 2119-2131.	2.3	19
130	Triphenylphosphine as phosphorus catalyst for reversible chain-transfer catalyzed polymerization (RTCP). Polymer Chemistry, 2013, 4, 3069.	3.9	19
131	A Highâ€Efficiency Strategy for Synthesizing Cyclic Polymers of Methacryates in One Pot. Macromolecular Rapid Communications, 2013, 34, 1014-1019.	3.9	19
132	PMDETA as an efficient catalyst for bulk reversible complexation mediated polymerization (RCMP) in the absence of additional metal salts and deoxygenation. RSC Advances, 2016, 6, 97455-97462.	3.6	19
133	A Facile Strategy for Catalyst Separation and Recycling Suitable for ATRP of Hydrophilic Monomers Using a Macroligand. Macromolecular Rapid Communications, 2016, 37, 143-148.	3.9	19
134	Visible light-induced PET-RAFT polymerization of methacrylates with novel organic photocatalysts. RSC Advances, 2017, 7, 24040-24045.	3.6	19
135	Reversible Addition-Fragmentation Chain Transfer Polymerization of Acrylonitrile under Irradiation of Blue LED Light. Polymers, 2017, 9, 4.	4.5	19
136	Controlled/living radical polymerization of methyl methacrylate using \hat{I}^3 -radiation as an initiation source. Radiation Physics and Chemistry, 2006, 75, 485-492.	2.8	18
137	Modification of multiwall carbon nanotubes via soapâ€free emulsion polymerization of acrylonitrile. Journal of Polymer Science Part A, 2010, 48, 2057-2062.	2.3	18
138	<i>In situ</i> Cu(0) catalyzed SET‣RP: The first attempt. Journal of Polymer Science Part A, 2011, 49, 4694-4700.	2.3	18
139	Fast RAFT aqueous polymerization in a continuous tubular reactor: consecutive synthesis of a double hydrophilic block copolymer. Polymer Chemistry, 2015, 6, 5030-5035.	3.9	18
140	Organocatalytic Approach to Functional Semifluorinated Polymers Driven by Visible Light. Macromolecular Rapid Communications, 2018, 39, e1800151.	3.9	18
141	Preparation of a novel sandwich-type electrochemical immunosensor for AFP detection based on an ATRP and click chemistry technique. Polymer Chemistry, 2020, 11 , 900-908.	3.9	18
142	Facilely Recyclable Cu(II) Macrocomplex with Thermoregulated Poly(ionic liquid) Macroligand: Serving as a Highly Efficient Atom Transfer Radical Polymerization Catalyst. ACS Sustainable Chemistry and Engineering, 2016, 4, 7066-7073.	6.7	18
143	Reversible Addition–Fragmentation Chainâ€Transfer Polymerization of Octadecyl Acrylate. Journal of Macromolecular Science - Pure and Applied Chemistry, 2003, 40, 963-975.	2.2	17
144	Atom transfer radical polymerizations of methyl methacrylate and styrene with an iniferter reagent as the initiator. Journal of Applied Polymer Science, 2007, 106, 230-237.	2.6	17

#	Article	IF	Citations
145	A novel azoâ€containing dithiocarbamate used for living radical polymerization of methyl acrylate and styrene. Journal of Polymer Science Part A, 2008, 46, 5626-5637.	2.3	17
146	Facile Soapâ€Free Miniemulsion Polymerization of Methyl Methacrylate via Reverse Atom Transfer Radical Polymerization. Macromolecular Rapid Communications, 2012, 33, 2121-2126.	3.9	17
147	Favorable hydrogen bonding in room-temperature Cu(0)-mediated controlled radical polymerization of 4-vinylpyridine. Polymer Chemistry, 2012, 3, 2731.	3.9	17
148	AGET ATRP of methyl methacrylatevia a bimetallic catalyst. RSC Advances, 2012, 2, 840-847.	3.6	17
149	Seleniumâ€substituted carbonates as mediators for controlled radical polymerization. Journal of Polymer Science Part A, 2013, 51, 2606-2613.	2.3	17
150	Bulk AGET ATRP of methyl methacrylate using iron(<scp>iii</scp>) acetylacetonate as a catalyst. Polymer Chemistry, 2014, 5, 6804-6810.	3.9	17
151	A novel methacrylate with a bisphosphonate group: RAFT polymerization and flame retardant property of the resultant polymers. Polymer Chemistry, 2015, 6, 2283-2289.	3.9	17
152	Real-time monitoring of a controlled drug delivery system in vivo: construction of a near infrared fluorescence monomer conjugated with pH-responsive polymeric micelles. Journal of Materials Chemistry B, 2016, 4, 3377-3386.	5.8	17
153	Synthesis and characterizations of 1,2,3-triazole containing polymers via reversible addition-fragmentation chain transfer (RAFT) polymerization. European Polymer Journal, 2008, 44, 1743-1751.	5.4	16
154	Iron(III)â€Mediated AGET ATRP of Methyl Methacrylate Using Vitamin C Sodium Salt as a Reducing Agent. Macromolecular Chemistry and Physics, 2011, 212, 1481-1488.	2.2	16
155	AGET ATRP of Methyl Methacrylate Based on Thermoregulated Phase Transfer Catalysis in Organic/Aqueous Biphasic System: Facile and Highly Efficient In Situ Catalyst/Ligand Separation and Recycling. Macromolecular Chemistry and Physics, 2015, 216, 1171-1179.	2.2	16
156	Synthesis of soap-free emulsion with high solid content by differential dripping RAFT polymerization-induced self-assembly. RSC Advances, 2017, 7, 6559-6564.	3.6	16
157	Photocontrolled iodine-mediated reversible-deactivation radical polymerization with a semifluorinated alternating copolymer as the macroinitiator. Polymer Chemistry, 2020, 11, 7497-7505.	3.9	16
158	Synthesis of ABA triblock copolymer of poly(potassium acrylate-styrene-potassium acrylate) by atom transfer radical polymerization and the self-assembly in selective solvents. Polymer, 2004, 45, 6525-6532.	3.8	15
159	Preparation and characterization of optically active polymers containing pendent and terminal chiral units via atom transfer radical polymerization. Journal of Polymer Science Part A, 2006, 44, 1502-1513.	2.3	15
160	Synthesis of dithiocarbamate bearing azobenzene group and use for RAFT polymerization of vinyl monomers. Journal of Polymer Science Part A, 2007, 45, 2886-2896.	2.3	15
161	Synthesis and characterization of fluorescence endâ€labeled polystyrene via reversible additionâ€fragmentation chain transfer (RAFT) polymerization. Journal of Polymer Science Part A, 2008, 46, 6198-6205.	2.3	15
162	Synthesizing and characterization of comb-shaped carbazole containing copolymer via combination of ring opening polymerization and nitroxide-mediated polymerization. Polymer, 2010, 51, 1947-1953.	3.8	15

#	Article	IF	Citations
163	RAFT copolymerization of a phosphorus-containing monomer with \hat{l}_{\pm} -hydroxy phosphonate and methyl methacrylate. RSC Advances, 2016, 6, 34659-34665.	3.6	15
164	Reverse Atom Transfer Radical Polymerization of Methyl Methacrylate using a New Catalyst, Copper(II)N,N′-Butyldithiocarbamate. Macromolecular Chemistry and Physics, 2004, 205, 806-813.	2.2	14
165	Influence of the chemical structure of dithiocarbamates with different R groups on the reversible addition-fragmentation chain transfer polymerization. Journal of Applied Polymer Science, 2007, 103, 982-988.	2.6	14
166	Synthesis of chiral amphiphilic diblock copolymers via consecutive RAFT polymerizations and their aggregation behavior in aqueous solution. Journal of Polymer Science Part A, 2008, 46, 7690-7701.	2.3	14
167	Basic ionic liquid/FeCl $<$ sub $>$ 3 $<$ /sub $>$ Â \cdot 6H $<$ sub $>$ 2 $<$ /sub $>$ O as an efficient catalyst for AGET ATRP of methyl methacrylate. Journal of Polymer Science Part A, 2012, 50, 1605-1610.	2.3	14
168	Synthesis of novel sideâ€chain triphenylamine polymers with azobenzene moieties via RAFT polymerization and investigation on their photoelectric properties. Journal of Polymer Science Part A, 2012, 50, 3788-3796.	2.3	14
169	Polymerâ€Grafted Modification of Activated Carbon by Surfaceâ€Initiated AGET ATRP. Macromolecular Chemistry and Physics, 2012, 213, 868-877.	2.2	14
170	Controlled Bimodal Molecularâ€Weightâ€Distribution Polymers: Facile Synthesis by RAFT Polymerization. Chemistry - A European Journal, 2012, 18, 6015-6021.	3.3	14
171	Iron-mediated (dual) concurrent ATRP–RAFT polymerization of water-soluble poly(ethylene glycol) monomethyl ether methacrylate. Polymer Chemistry, 2013, 4, 5664.	3.9	14
172	Thermoregulated phase transfer catalysis in aqueous/organic biphasic system: facile and highly efficient ATRP catalyst separation and recycling in situ using typical alkyl halide as initiator. Polymer Chemistry, 2015, 6, 6394-6401.	3.9	14
173	Photocontrolled bromine–iodine transformation reversible-deactivation radical polymerization: facile synthesis of star copolymers and unimolecular micelles. Polymer Chemistry, 2021, 12, 2335-2345.	3.9	14
174	Facile Synthesis of Unimodal Polymethacrylates with Narrow Dispersity via NIR LED Lightâ€Controlled Bromine–lodine Transformation Reversibleâ€Deactivation Radical Polymerization. Macromolecular Rapid Communications, 2021, 42, e2100211.	3.9	14
175	Reversible Addition Fragmentation Chain Transfer (RAFT) Emulsion Polymerization of Methyl Methacrylate via a Plasma-initiated Process. Polymer Bulletin, 2006, 56, 539-548.	3.3	13
176	Preparation and characterization of poly(styrene)/metal composites via reversible addition-fragmentation chain transfer (RAFT) polymerization. Reactive and Functional Polymers, 2009, 69, 55-61.	4.1	13
177	Ironâ€mediated AGET ATRP of Methyl Methacrylate in the Presence of Catalytic Amounts of Base. Macromolecular Chemistry and Physics, 2011, 212, 1474-1480.	2.2	13
178	Recent advances in "livingâ€∤controlled radical polymerization of phosphorus-containing monomers and their potential applications. Science China Chemistry, 2015, 58, 1633-1640.	8.2	13
179	Facile synthesis of poly(vinyl acetate)-b-polystyrene copolymers mediated by an iniferter agent using a single methodology. Polymer Chemistry, 2017, 8, 5918-5923.	3.9	13
180	Atom transfer radical polymerization of hexadecyl acrylate using CuSCN as the catalyst. Macromolecular Research, 2004, 12, 32-37.	2.4	12

#	Article	IF	CITATIONS
181	Synthesis and characterization of novel copolymer containing pyridylazo-2-naphthoxyl group via reversible addition–fragmentation chain transfer (RAFT) polymerization. Polymer, 2008, 49, 3048-3053.	3.8	12
182	Synthesis of tetrazoleâ€containing azo polymers with properties of photoâ€induced birefringence and surfaceâ€reliefâ€gratings via RAFT polymerization. Journal of Polymer Science Part A, 2008, 46, 682-691.	2.3	12
183	Synthesis of Miktoarm Dumbbell-Like Amphiphilic Triblock Copolymer by Combination of Consecutive RAFT Polymerizations and ATRP. Polymer Bulletin, 2009, 62, 11-22.	3.3	12
184	Straightforward and Highly Efficient Synthesis of Diselenocarbamates. Organic Letters, 2012, 14, 6170-6173.	4.6	12
185	Fabrication of magnetic nanofibers via surface-initiated RAFT polymerization and coaxial electrospinning. Reactive and Functional Polymers, 2013, 73, 1447-1454.	4.1	12
186	Facile and universal photo-induced living radical polymerization system mediated by iniferter agent and copper(<scp>ii</scp>) acetate at ambient temperature. RSC Advances, 2015, 5, 31657-31663.	3.6	12
187	Photocatalyzed iron-based ATRP of methyl methacrylate using $1,3$ -dimethyl-2-imidazolidinone as both solvent and ligand. RSC Advances, 2017, 7, 3888-3893.	3.6	12
188	The positive effect of water on photo-induced step transfer-addition & mp; radical-termination (START) polymerization. RSC Advances, 2017, 7, 17988-17996.	3.6	12
189	Atom Transfer Radical Polymerization of Methyl Methacrylate under Microwave Irradiation. Polymer Journal, 2003, 35, 399-401.	2.7	11
190	"Livingâ€∤controlled polymerization of methyl acrylate mediated by dithiocarbamates under γ-ray irradiation. Journal of Applied Polymer Science, 2007, 103, 1769-1775.	2.6	11
191	Reversible addition–fragmentation chain transfer polymerizations of styrene with two novel trithiocarbonates as RAFT agents. Polymer, 2008, 49, 5431-5438.	3.8	11
192	Zeroâ€valent bimetallic iron/copper catalyzed SETâ€LRP: A dual activation by zeroâ€valent iron. Journal of Polymer Science Part A, 2012, 50, 936-943.	2.3	11
193	SETâ€RAFT of MMA mediated by ascorbic acidâ€activated copper oxide. Journal of Polymer Science Part A, 2012, 50, 1424-1433.	2.3	11
194	60Co \hat{I}^3 -irradiation-initiated RAFT polymerization of VAc at room temperature. Reactive and Functional Polymers, 2012, 72, 153-159.	4.1	11
195	Reversible additionâ€fragmentation chain transfer polymerization of vinyl acetate under high pressure. Journal of Polymer Science Part A, 2015, 53, 1430-1436.	2.3	11
196	Facile iron(<scp>iii</scp>)-mediated ATRP of MMA with phosphorus-containing ligands in the absence of any additional initiators. RSC Advances, 2015, 5, 62577-62584.	3.6	11
197	Photocontrolled Iodineâ€Mediated Reversibleâ€Deactivation Radical Polymerization: Solution Polymerization of Methacrylates by Irradiation with NIR LED Light. Angewandte Chemie, 2020, 132, 3938-3944.	2.0	11
198	Multimesophase transitions of main-chain liquid crystalline copolymers with strictly alternating fluorocarbon chains. Polymer Chemistry, 2021, 12, 736-743.	3.9	11

#	Article	IF	Citations
199	Reduction-Induced Crystallization-Driven Self-Assembly of Main-Chain-Type Alternating Copolymers: Transformation from 1D Lines to 2D Platelets. ACS Macro Letters, 2021, 10, 564-569.	4.8	11
200	A novel reversible-deactivation radical polymerization strategy via near-infrared light-controlled photothermal conversion dividing wall-type heat exchanger. Science China Chemistry, 2021, 64, 1242-1250.	8.2	11
201	Homogeneous Solution Reverse Atom Transfer Radical Polymerization of Methyl Methacrylate. Journal of Macromolecular Science - Pure and Applied Chemistry, 2003, 40, 371-385.	2.2	10
202	Synthesis of 1,3-benzodioxole end-functionalized polymers via reversible addition–fragmentation chain transfer polymerization. Journal of Applied Polymer Science, 2006, 99, 3535-3539.	2.6	10
203	Synthesis and photoinduced surfaceâ€relief grating of wellâ€defined azoâ€containing polymethacrylates via atom transfer radical polymerization. Journal of Applied Polymer Science, 2007, 106, 1234-1242.	2.6	10
204	Synthesis and properties of crosslinked chiral nanoparticles via RAFT miniemulsion polymerization. Journal of Polymer Science Part A, 2010, 48, 1324-1331.	2.3	10
205	Imidazoline Nitroxideâ€Mediated Radical Polymerization of Styrene. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007, 44, 41-46.	2.2	9
206	A Novel Synthetic Method for Well-Defined Polymers Containing Benzotriazole and Diazobenzene Chromophores. Macromolecular Chemistry and Physics, 2007, 208, 1101-1109.	2.2	9
207	Synthesis of Amphiphilic ABCBAâ€√ype Pentablock Copolymer from Consecutive ATRPs and Selfâ€Assembly in Aqueous Solution. Macromolecular Symposia, 2008, 261, 54-63.	0.7	9
208	Reversible-deactivation radical polymerization mediated by CuSO4·5H2O: an alternative and promising copper(ii)-based catalyst. Polymer Chemistry, 2012, 3, 3220.	3.9	9
209	ATRP of styrene catalyzed by elemental Fe(0) and Br ₂ : An easy and economical ATRP process. Journal of Polymer Science Part A, 2012, 50, 2182-2187.	2.3	9
210	Synthesis of well-defined copolymer of acrylonitrile and maleic anhydride via RAFT polymerization. Journal of Polymer Science Part A, 2013, 51, 5263-5269.	2.3	9
211	Living cationic polymerization of bisazobenzene-containing vinyl ether and synthesis of a graft copolymer by combination with ATRP. Polymer Chemistry, 2014, 5, 4076-4082.	3.9	9
212	Facile one-pot synthesis and self-healing properties of tetrazole-based metallopolymers in the presence of iron salts. RSC Advances, 2017, 7, 47316-47323.	3.6	9
213	Synthesis of highly proton-conductive poly(arylene ether sulfone) bearing perfluoroalkyl sulfonic acids via polymer post-modification. Polymer, 2017, 123, 345-354.	3.8	9
214	Construction of a near-infrared light-controlled reciprocating piston "pump―based on soft actuators with fluorine-containing alternating polymer. Journal of Materials Chemistry C, 2020, 8, 10238-10247.	5.5	9
215	Facile synthesis of poly(<i>N</i> -vinyl pyrrolidone) block copolymers with "more-activated― monomers by using photoinduced successive RAFT polymerization. Polymer Chemistry, 2020, 11, 2080-2088.	3.9	9
216	Living/controlled radical autopolymerization of styrene in the presence of CuCl2 and 2,2?-bipyridine. Journal of Applied Polymer Science, 2003, 90, 1532-1538.	2.6	8

#	Article	IF	Citations
217	Atom Transfer Radical Polymerization of Styrene Using Various Onium Salts as Ligands. Journal of Macromolecular Science - Pure and Applied Chemistry, 2004, 41, 487-499.	2.2	8
218	Reverse Atom Transfer Radical Polymerization of Styrene Initiated by Tetramethylthiuram Disulfide/CuSCN/N,N,N′,N″,N″â€Pentamethyldiethylenetriamine in the Presence of Acetonitrile. Journal of Macromolecular Science - Pure and Applied Chemistry, 2004, 41, 49-61.	2.2	8
219	Synthesis of a Wellâ€Defined Naphthaleneâ€Labeled Polystyrene via Atom Transfer Radical Polymerization. Journal of Macromolecular Science - Pure and Applied Chemistry, 2005, 42, 341-349.	2.2	8
220	RAFT Polymerization of Styrene in the Presence of 2â€Nonylâ€benzoimidazoleâ€1â€carbodithioic Acid Benzyl Ester. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007, 44, 315-320.	2.2	8
221	Synthesis and Characterizations of Triphenylamine End-Functionalized Polymers via Reversible Addition-Fragmentation Chain Transfer Polymerization. Polymer Bulletin, 2008, 61, 287-297.	3.3	8
222	Synthesis of Poly(methyl methacrylate) Labeled with Fluorescein Moieties via Atom Transfer Radical Polymerization. Journal of Macromolecular Science - Pure and Applied Chemistry, 2008, 45, 328-334.	2.2	8
223	RAFT Copolymerization of Glycidyl Methacrylate and <i>N</i> , <i>N</i> êÐimethylaminoethyl Methacrylate. Chinese Journal of Chemistry, 2012, 30, 2138-2144.	4.9	8
224	Fe(0) Powder/CuBr2-Mediated "Livingâ€∮Controlled Radical Polymerization of Methyl Methacrylate and Styrene at Ambient Temperature. Macromolecular Chemistry and Physics, 2012, 213, 439-446.	2.2	8
225	Iron-mediated AGET ATRP of MMA using acidic/basic salts as reducing agents. Polymer Bulletin, 2013, 70, 631-642.	3.3	8
226	Highâ€Efficiency Preparation of Macrocyclic Polymers via a Circulatory Extraction–Cyclization Strategy. Macromolecular Chemistry and Physics, 2013, 214, 1107-1113.	2.2	8
227	Photoinduced Ironâ€Based Waterâ€Induced Phase Separable Catalysis (WPSC) ICAR ATRP of Poly(ethylene) Tj ETC	Qg.J 1 0.78	3 4 314 rgBT
228	One-Step Photocontrolled Polymerization-Induced Self-Assembly (Photo-PISA) by Using In Situ Bromine-Iodine Transformation Reversible-Deactivation Radical Polymerization. Polymers, 2020, 12, 150.	4.5	8
229	Synthesis and Phase Behavior of (Semifluorinated Alkane)â€Based Sideâ€Chain Liquid Crystalline Copolymers. Macromolecular Rapid Communications, 2022, 43, .	3.9	8
230	Synthesis and Characterization of Polymers Containing Azobenzene Chromophoric Group by ATRP. Journal of Macromolecular Science - Pure and Applied Chemistry, 2006, 43, 393-403.	2.2	7
231	Preparation and Characterization of Linear and Miktoarm Star Side-Chain Liquid Crystalline block Copolymers with <i>p</i> -Methoxyazobenzene Moieties via a Combination of ATRP and ROP. Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 46, 876-885.	2.2	7
232	Chlorodithiocarbamateâ€Mediated RAFT Polymerization: A Novel Synthetic Method for ATRP Macroinitiators. Macromolecular Reaction Engineering, 2010, 4, 264-271.	1.5	7
233	Stable free radical polymerization of styrene with 4-sulphonate-2,2,6,6-tetramethylpiperidine-N-oxyl as mediators. Polymer Bulletin, 2010, 64, 1-13.	3.3	7
234	Producing bimodal molecular weight distribution polymers through facile oneâ€pot/oneâ€step RAFT polymerization. Journal of Polymer Science Part A, 2012, 50, 4103-4109.	2.3	7

#	Article	IF	Citations
235	Reversible chain transfer catalyzed polymerization (RTCP) in nitrogen-based solvents without additional catalysts. RSC Advances, 2015, 5, 34769-34776.	3 . 6	7
236	Synthesis of amphiphilic nanoparticles and multi-block hydrophilic copolymers by a facile and effective "living―radical polymerization in water. Polymer Chemistry, 2016, 7, 2486-2491.	3.9	7
237	Microwaveâ€assisted rapid fabrication of antibacterial polyacrylonitrile microfibers/nanofibers via nitrile click chemistry and electrospinning. Journal of Applied Polymer Science, 2017, 134, 45490.	2.6	7
238	Facile photochemical synthesis of main-chain-type semifluorinated alternating copolymers catalyzed by conventional amines or halide salts. Chemical Communications, 2021, 57, 11354-11357.	4.1	7
239	Reversible Addition Fragmentation Chain Transfer Polymerization of Isobutyl Methacrylate. Journal of Macromolecular Science - Pure and Applied Chemistry, 2004, 41, 1059-1070.	2.2	6
240	Copolymerization of Nâ€Vinylcarbazole and Vinyl Acetate via Reversible Additionâ€Fragmentation Chain Transfer (RAFT) Polymerization. Macromolecular Symposia, 2008, 261, 46-53.	0.7	6
241	Mechanism study and molecular design in controlled/"living―radical polymerization. Science China Chemistry, 2010, 53, 1605-1619.	8.2	6
242	Initiator-chain transfer agent combo in the RAFT polymerization of styrene. Chemical Communications, 2014, 50, 9722-9724.	4.1	6
243	Facile and highly efficient "living―radical polymerization of hydrophilic vinyl monomers in water. RSC Advances, 2014, 4, 52430-52437.	3.6	6
244	Iron-mediated AGET ATRP with crown ether as both ligand and solvent. RSC Advances, 2015, 5, 104733-104739.	3.6	6
245	Polymerization of styrene with tetramethylthiuram disulfide as an initiator in the presence of 2,2,6,6-tetramethyl-1-piperidinyloxy. Journal of Polymer Science Part A, 2005, 43, 543-551.	2.3	5
246	New dinitroxide for stable free radical polymerization of styrene. Journal of Applied Polymer Science, 2006, 100, 1137-1145.	2.6	5
247	Atom Transfer Radical Polymerization of Methyl Methacrylate High Efficiently Initiated by Azo-containing Iniferter. Journal of Macromolecular Science - Pure and Applied Chemistry, 2008, 45, 850-856.	2.2	5
248	Synthesis of azobenzene functionalized dendritic block copolymer based on hyperbranched PDMAEMA and investigation of its drug release properties. Journal of Controlled Release, 2011, 152, e104-e105.	9.9	5
249	Fluorescence emission of amphiphilic copolymers bearing benzimidazole groups: Stimuli-responsive behaviors in aqueous solution. Journal of Polymer Science Part A, 2013, 51, 4459-4466.	2.3	5
250	Plasma-induced copolymerization of hydrochloride of N,N-dimethylaminoethyl methacrylate and acrylamide. Journal of Applied Polymer Science, 2002, 84, 729-734.	2.6	4
251	Atom transfer radical polymerization of styrene with 2-(1-bromoethyl)-anthraquinone as an initiator. Journal of Applied Polymer Science, 2006, 102, 2081-2085.	2.6	4
252	2-oxo-tetrahydrofuran-3-yl 9H-carbazole-9-carbodithioate mediated reversible addition-fragmentation chain transfer (RAFT) polymerization. Journal of Applied Polymer Science, 2007, 104, 2913-2918.	2.6	4

#	Article	IF	Citations
253	Synthesis and properties of hydrogels prepared via AGET ATRP using iron salt as catalyst. Journal of Controlled Release, 2011, 152, e210-e211.	9.9	4
254	A Bifunctional Diblock Copolymer from Consecutive RAFT Polymerizations and its Functionalization. Macromolecular Chemistry and Physics, 2013, 214, 654-663.	2.2	4
255	Microwaveâ€Assisted Reversible Coordinationâ€Mediated Polymerization for Selfâ€Healing Hybrid Materials: RGO@PDA Simultaneous as Catalyst and Nanocomposites in Oneâ€Pot. Macromolecular Materials and Engineering, 2019, 304, 1900477.	3.6	4
256	Transition Metal Catalyst Separation and Recycling: Recent Progress in TPSC-based ATRP. Current Organic Chemistry, 2018, 22, 1256-1263.	1.6	4
257	Synthesis of Well-defined Carbazole Group Labelled Polymer via RAFT Polymerization and Study on the Optical Properties. E-Polymers, 2006, 6, .	3.0	3
258	Preparation of azobenzene-terminated polymers via reversible addition-fragmentation chain transfer (RAFT) polymerization. E-Polymers, 2008, 8, .	3.0	3
259	Synthesis of Poly(methyl methacrylate) Labeled with Fluorescein Moieties via Atom Transfer Radical Polymerization. Journal of Macromolecular Science - Pure and Applied Chemistry, 2008, 45, 495-501.	2.2	2
260	Facile synthesis of fluorescent ABA type amphiphilic triblock copolymers via RAFT polymerization and their aggregation behavior in a selective solvent. E-Polymers, 2009, 9, .	3.0	2
261	ATRP of MMA under ⁶⁰ Co γâ€irradiation at room temperature. Journal of Polymer Science Part A, 2011, 49, 3588-3594.	2.3	2
262	Synthesis of Amphiphilic Azobenzene Functionalized Branched-Type Copolymer Based on Branched Poly(2-(Dimethylamino) ethyl methacrylate) and Investigation of Its Drug Release Properties. Journal of Macromolecular Science - Pure and Applied Chemistry, 2012, 49, 834-844.	2.2	2
263	A Novel Janus Initiator for ATRP: Initiator Design and Application in Polymerization. Macromolecular Chemistry and Physics, 2015, 216, 1653-1659.	2.2	2
264	Methacrylate copolymers with substituted azobenzene side groups: synthesis, characterization and photo-induced birefringence properties. E-Polymers, 2010, 10, .	3.0	1
265	An Alternating Conduction-Insulation Molecular "Fence―Model from Fluorinated Metallopolymers. Chemical Communications, 2022, , .	4.1	1
266	Atom Transfer Radical Polymerization of Methyl Methacrylate with î±,î±,î±â€²,î±â€²â€Tetrachloroxylene as an Initiator. Journal of Macromolecular Science - Pure and Applied Chemistry, 2006, 43, 1445-1458.	2.2	0
267	Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization of Vinyl Monomers Initiated by Poly(methyl methacrylate) Peroxide. E-Polymers, 2007, 7, .	3.0	0
268	Nitroxide-mediated polymerization of styrene in the presence of a novel trinitroxide. E-Polymers, 2010, 10 , .	3.0	0
269	Facile synthesis of micron-size Janus particles by one-pot suspension polymerization and their functional modification. Polymer Chemistry, 2021, 12, 2722-2730.	3.9	0