
Jose A Sanz-Herrera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1615169/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding glioblastoma invasion using physically-guided neural networks with internal variables. PLoS Computational Biology, 2022, 18, e1010019.	1.5	3
2	Data-Driven Computational Simulation in Bone Mechanics. Annals of Biomedical Engineering, 2021, 49, 407-419.	1.3	6
3	Inverse method based on 3D nonlinear physically constrained minimisation in the framework of traction force microscopy. Soft Matter, 2021, 17, 10210-10222.	1.2	14
4	Mechanical Influence of Surrounding Soft Tissue on Bone Regeneration Processes: A Bone Lengthening Study. Annals of Biomedical Engineering, 2021, 49, 642-652.	1.3	7
5	Advanced in silico validation framework for three-dimensional traction force microscopy and application to an in vitro model of sprouting angiogenesis. Acta Biomaterialia, 2021, 126, 326-338.	4.1	13
6	TFMLAB: A MATLAB toolbox for 4D traction force microscopy. SoftwareX, 2021, 15, 100723.	1.2	22
7	Prediction and identification of physical systems by means of Physically-Guided Neural Networks with meaningful internal layers. Computer Methods in Applied Mechanics and Engineering, 2021, 381, 113816.	3.4	11
8	Structural optimization of 3D-printed patient-specific ceramic scaffolds for in vivo bone regeneration in load-bearing defects. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 121, 104613.	1.5	16
9	Analysis of the Parametric Correlation in Mathematical Modeling of In Vitro Glioblastoma Evolution Using Copulas. Mathematics, 2021, 9, 27.	1.1	1
10	Mathematical formulation and parametric analysis of in vitro cell models in microfluidic devices: application to different stages of glioblastoma evolution. Scientific Reports, 2020, 10, 21193.	1.6	17
11	A multiscale data-driven approach for bone tissue biomechanics. Computer Methods in Applied Mechanics and Engineering, 2020, 368, 113136.	3.4	14
12	Special Issue on "Biomaterials for Bone Tissue Engineering― Applied Sciences (Switzerland), 2020, 10, 2660.	1.3	2
13	Continuum Modeling and Simulation in Bone Tissue Engineering. Applied Sciences (Switzerland), 2019, 9, 3674.	1.3	8
14	Computational Multiscale Solvers for Continuum Approaches. Materials, 2019, 12, 691.	1.3	7
15	Numerical investigation of the coupled mechanical behavior of self-healing materials under cyclic loading. International Journal of Solids and Structures, 2019, 160, 232-246.	1.3	9
16	An unsupervised data completion method for physically-based data-driven models. Computer Methods in Applied Mechanics and Engineering, 2019, 344, 120-143.	3.4	12
17	Multiscale Characterisation of Cortical Bone Tissue. Applied Sciences (Switzerland), 2019, 9, 5228.	1.3	4
18	In silico design of magnesium implants: Macroscopic modeling. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 79, 181-188.	1.5	18

JOSE A SANZ-HERRERA

#	Article	IF	CITATIONS
19	A new reliability-based data-driven approach for noisy experimental data with physical constraints. Computer Methods in Applied Mechanics and Engineering, 2018, 328, 752-774.	3.4	30
20	Model of dissolution in the framework of tissue engineering and drug delivery. Biomechanics and Modeling in Mechanobiology, 2018, 17, 1331-1341.	1.4	2
21	In silico dynamic characterization of the femur: Physiological versus mechanical boundary conditions. Medical Engineering and Physics, 2018, 58, 80-85.	0.8	14
22	A PGD-based multiscale formulation for non-linear solid mechanics under small deformations. Computer Methods in Applied Mechanics and Engineering, 2016, 305, 806-826.	3.4	12
23	In vivo measurement of skin surface strain and sub-surface layer deformation induced by natural tissue stretching. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 62, 556-569.	1.5	111
24	Chemical-diffusive modeling of the self-healing behavior in concrete. International Journal of Solids and Structures, 2015, 69-70, 392-402.	1.3	31
25	A novel method for visualising and quantifying through-plane skin layer deformations. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 14, 199-207.	1.5	46
26	Modelling bioactivity and degradation of bioactive glass based tissue engineering scaffolds. International Journal of Solids and Structures, 2011, 48, 257-268.	1.3	57
27	Multiscale simulation of particle-reinforced elastic–plastic adhesives at small strains. Computer Methods in Applied Mechanics and Engineering, 2011, 200, 2211-2222.	3.4	8
28	The pro-angiogenic properties of multi-functional bioactive glass composite scaffolds. Biomaterials, 2011, 32, 4096-4108.	5.7	176
29	Cell-Biomaterial Mechanical Interaction in the Framework of Tissue Engineering: Insights, Computational Modeling and Perspectives. International Journal of Molecular Sciences, 2011, 12, 8217-8244.	1.8	50
30	Modelling bone tissue engineering. Towards an understanding of the role of scaffold design parameters. Computational Methods in Applied Sciences (Springer), 2011, , 71-90.	0.1	2
31	A rotating bed system bioreactor enables cultivation of primary osteoblasts on wellâ€characterized sponceram® regarding structural and flow properties. Biotechnology Progress, 2010, 26, 671-678.	1.3	11
32	Scaffold microarchitecture determines internal bone directional growth structure: A numerical study. Journal of Biomechanics, 2010, 43, 2480-2486.	0.9	43
33	Cell–Material Communication: Mechanosensing Modelling for Design in Tissue Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2010, , 451-462.	0.7	1
34	Novel 3D biomaterials for tissue engineering based on collagen and macroporous ceramics. Materialwissenschaft Und Werkstofftechnik, 2009, 40, 54-60.	0.5	9
35	On the effect of substrate curvature on cell mechanics. Biomaterials, 2009, 30, 6674-6686.	5.7	83
36	Analysis of cracked piezoelectric solids by a mixed three-dimensional BE approach. Engineering Analysis With Boundary Elements, 2009, 33, 271-282.	2.0	13

JOSE A SANZ-HERRERA

#	Article	IF	CITATIONS
37	Permeability evaluation of 45S5 Bioglass®-based scaffolds for bone tissue engineering. Journal of Biomechanics, 2009, 42, 257-260.	0.9	117
38	On scaffold designing for bone regeneration: A computational multiscale approach. Acta Biomaterialia, 2009, 5, 219-229.	4.1	183
39	A mathematical approach to bone tissue engineering. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 2055-2078.	1.6	40
40	Fast multipole method applied to 3-D frequency domain elastodynamics. Engineering Analysis With Boundary Elements, 2008, 32, 787-795.	2.0	13
41	A mathematical model for bone tissue regeneration inside a specific type of scaffold. Biomechanics and Modeling in Mechanobiology, 2008, 7, 355-366.	1.4	84
42	Mechanical and flow characterization of Sponceram® carriers: Evaluation by homogenization theory and experimental validation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 87B, 42-48.	1.6	32
43	Micro–macro numerical modelling of bone regeneration in tissue engineering. Computer Methods in Applied Mechanics and Engineering, 2008, 197, 3092-3107.	3.4	60
44	Simulation of Bone Remodelling and Bone Ingrowth within Scaffolds. Key Engineering Materials, 2008, 377, 225-273.	0.4	3
45	Polymer scaffolds with interconnected spherical pores and controlled architecture for tissue engineering: Fabrication, mechanical properties, and finite element modeling. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 81B, 448-455.	1.6	49
46	Three-dimensional BEM for piezoelectric fracture analysis. Engineering Analysis With Boundary Elements, 2005, 29, 586-596.	2.0	25
47	Bone-Cement Interface Micromechanical Model under Cyclic Loading. Key Engineering Materials, 0, 488-489, 391-394.	0.4	0