Tremblay Leon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1614855/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Relative reward preference in primate orbitofrontal cortex. Nature, 1999, 398, 704-708.	27.8	1,198
2	Reward Processing in Primate Orbitofrontal Cortex and Basal Ganglia. Cerebral Cortex, 2000, 10, 272-283.	2.9	802
3	The cerebellum communicates with the basal ganglia. Nature Neuroscience, 2005, 8, 1491-1493.	14.8	727
4	Non-motor dopamine withdrawal syndrome after surgery for Parkinson's disease: predictors and underlying mesolimbic denervation. Brain, 2010, 133, 1111-1127.	7.6	453
5	Abnormal influences of passive limb movement on the activity of globus pallidus neurons in parkinsonian monkeys. Brain Research, 1988, 444, 165-176.	2.2	351
6	Influence of Reward Expectation on Behavior-Related Neuronal Activity in Primate Striatum. Journal of Neurophysiology, 1998, 80, 947-963.	1.8	345
7	Reward prediction in primate basal ganglia and frontal cortex. Neuropharmacology, 1998, 37, 421-429.	4.1	273
8	Modifications of Reward Expectation-Related Neuronal Activity During Learning in Primate Striatum. Journal of Neurophysiology, 1998, 80, 964-977.	1.8	253
9	Reward-Related Neuronal Activity During Go-Nogo Task Performance in Primate Orbitofrontal Cortex. Journal of Neurophysiology, 2000, 83, 1864-1876.	1.8	245
10	Motor control in basal ganglia circuits using fMRI and brain atlas approaches. Cerebral Cortex, 2006, 16, 149-161.	2.9	227
11	Changes in behavior-related neuronal activity in the striatum during learning. Trends in Neurosciences, 2003, 26, 321-328.	8.6	210
12	Behavioural disorders induced by external globus pallidus dysfunction in primates: I. Behavioural study. Brain, 2004, 127, 2039-2054.	7.6	210
13	Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior. Progress in Brain Research, 2000, 126, 193-215.	1.4	195
14	The prominent role of serotonergic degeneration in apathy, anxiety and depression in <i>de novo</i> Parkinson's disease. Brain, 2016, 139, 2486-2502.	7.6	188
15	Behavioural disorders induced by external globus pallidus dysfunction in primates II. Anatomical study. Brain, 2004, 127, 2055-2070.	7.6	171
16	Selective dysfunction of basal ganglia subterritories: From movement to behavioral disorders. Movement Disorders, 2015, 30, 1155-1170.	3.9	168
17	Thalamic Neuronal Activity in Dopamine-Depleted Primates: Evidence for a Loss of Functional Segregation within Basal Ganglia Circuits. Journal of Neuroscience, 2005, 25, 1523-1531.	3.6	153
18	Distinct structural changes underpin clinical phenotypes in patients with Gilles de la Tourette syndrome. Brain, 2010, 133, 3649-3660.	7.6	149

#	Article	IF	CITATIONS
19	Modifications of Reward Expectation-Related Neuronal Activity During Learning in Primate Orbitofrontal Cortex. Journal of Neurophysiology, 2000, 83, 1877-1885.	1.8	144
20	Behavioral and Movement Disorders Induced by Local Inhibitory Dysfunction in Primate Striatum. Cerebral Cortex, 2009, 19, 1844-1856.	2.9	139
21	Activity of pallidal neurons in the monkey during dyskinesia induced by injection of bicuculline in the external pallidum. Neuroscience, 1995, 65, 59-70.	2.3	124
22	A new model to study compensatory mechanisms in MPTP-treated monkeys exhibiting recovery. Brain, 2007, 130, 2898-2914.	7.6	124
23	Responses of pallidal neurons to striatal stimulation in monkeys with MPTP-induced parkinsonism. Brain Research, 1989, 498, 17-33.	2.2	123
24	The pallidosubthalamic projection: An anatomical substrate for nonmotor functions of the subthalamic nucleus in primates. Movement Disorders, 2005, 20, 172-180.	3.9	116
25	Role of serotonergic 1A receptor dysfunction in depression associated with Parkinson's disease. Movement Disorders, 2012, 27, 84-89.	3.9	112
26	Behavioral reactions reflecting differential reward expectations in monkeys. Experimental Brain Research, 2001, 140, 511-518.	1.5	108
27	Behavioral changes are not directly related to striatal monoamine levels, number of nigral neurons, or dose of parkinsonian toxin MPTP in mice. Neurobiology of Disease, 2003, 14, 218-228.	4.4	90
28	Behavioral Recovery in MPTP-Treated Monkeys: Neurochemical Mechanisms Studied by Intrastriatal Microdialysis. Journal of Neuroscience, 2008, 28, 9575-9584.	3.6	84
29	Distinct striatal regions support movement selection, preparation and execution. NeuroReport, 2004, 15, 2327-2331.	1.2	82
30	Imaging the Etiology of Apathy, Anxiety, and Depression in Parkinson's Disease: Implication for Treatment. Current Neurology and Neuroscience Reports, 2017, 17, 76.	4.2	79
31	Towards a primate model of Gilles de la Tourette syndrome: Anatomo-behavioural correlation of disorders induced by striatal dysfunction. Cortex, 2013, 49, 1126-1140.	2.4	77
32	Responses of pallidal neurons to striatal stimulation in intact waking monkeys. Brain Research, 1989, 498, 1-16.	2.2	76
33	Behavioral Consequences of Bicuculline Injection in the Subthalamic Nucleus and the Zona Incerta in Rat. Journal of Neuroscience, 2002, 22, 8711-8719.	3.6	74
34	High-Frequency Stimulation of the Anterior Subthalamic Nucleus Reduces Stereotyped Behaviors in Primates. Journal of Neuroscience, 2008, 28, 8785-8788.	3.6	74
35	Tremor-related activity of neurons in the â€~motor' thalamus: changes in firing rate and pattern in the MPTP vervet model of parkinsonism. European Journal of Neuroscience, 2003, 17, 2388-2400.	2.6	69
36	Distinct presynaptic control of dopamine release in striosomal- and matrix-enriched areas of the rat striatum by selective agonists of NK1, NK2, and NK3 tachykinin receptors Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 11214-11218.	7.1	66

#	Article	IF	CITATIONS
37	Behavioural impact of a double dopaminergic and serotonergic lesion in the non-human primate. Brain, 2015, 138, 2632-2647.	7.6	54
38	Ventral Pallidum Encodes Contextual Information and Controls Aversive Behaviors. Cerebral Cortex, 2017, 27, bhw107.	2.9	53
39	Roles of Multiple Clobus Pallidus Territories of Monkeys and Humans in Motivation, Cognition and Action: An Anatomical, Physiological and Pathophysiological Review. Frontiers in Neuroanatomy, 2017, 11, 30.	1.7	53
40	Early limbic microstructural alterations in apathy and depression in de novo Parkinson's disease. Movement Disorders, 2019, 34, 1644-1654.	3.9	52
41	Neurons With Object-Centered Spatial Selectivity in Macaque SEF: Do They Represent Locations or Rules?. Journal of Neurophysiology, 2002, 87, 333-350.	1.8	45
42	A multi-atlas based method for automated anatomical Macaca fascicularis brain MRI segmentation and PET kinetic extraction. NeuroImage, 2013, 77, 26-43.	4.2	45
43	Antisaccade Deficit after Inactivation of the Principal Sulcus in Monkeys. Cerebral Cortex, 2006, 17, 221-229.	2.9	44
44	Macaque Supplementary Eye Field Neurons Encode Object-Centered Locations Relative to Both Continuous and Discontinuous Objects. Journal of Neurophysiology, 2000, 83, 2392-2411.	1.8	42
45	Imaging Dopamine and Serotonin Systems on MPTP Monkeys: A Longitudinal PET Investigation of Compensatory Mechanisms. Journal of Neuroscience, 2016, 36, 1577-1589.	3.6	42
46	Quantitative analysis of dopaminergic loss in relation to functional territories in MPTP-treated monkeys. European Journal of Neuroscience, 2003, 18, 2082-2086.	2.6	41
47	Impairment of contextâ€adapted movement selection in a primate model of presymptomatic Parkinson's disease. Brain, 2003, 126, 1392-1408.	7.6	37
48	An Effect of Dopamine Depletion on Decision-making: The Temporal Coupling of Deliberation and Execution. Journal of Cognitive Neuroscience, 2005, 17, 1886-1896.	2.3	37
49	Serotonergic and Dopaminergic Lesions Underlying Parkinsonian Neuropsychiatric Signs. Movement Disorders, 2021, 36, 2888-2900.	3.9	37
50	Dopaminergic innervation of the pallidum in the normal state, in MPTPâ€ŧreated monkeys and in parkinsonian patients. European Journal of Neuroscience, 2000, 12, 4525-4535.	2.6	29
51	Disruption of self-organized actions in monkeys with progressive MPTP-induced parkinsonism: II. Effects of reward preference. European Journal of Neuroscience, 2004, 19, 437-446.	2.6	27
52	Cortico-basal ganglia circuits involved in different motivation disorders in non-human primates. Brain Structure and Function, 2016, 221, 345-364.	2.3	27
53	Effects of dopamine and serotonin antagonist injections into the striatopallidal complex of asymptomatic MPTP-treated monkeys. Neurobiology of Disease, 2012, 48, 27-39.	4.4	26
54	Disruption of self-organized actions in monkeys with progressive MPTP-induced parkinsonism. I. Effects of task complexity. European Journal of Neuroscience, 2004, 19, 426-436.	2.6	25

#	Article	IF	CITATIONS
55	Disturbance of approachâ€avoidance behaviors in nonâ€human primates by stimulation of the limbic territories of basal ganglia and anterior insula. European Journal of Neuroscience, 2019, 49, 687-700.	2.6	25
56	Distinct presynaptic control of dopamine release in striosomal- and matrix-enriched areas of the rat striatum by selective agonists of NK1, NK2 and NK3 tachykinin receptors. Regulatory Peptides, 1993, 46, 124-128.	1.9	23
57	Ventral striatum supports Methylphenidate therapeutic effects on impulsive choices expressed in temporal discounting task. Scientific Reports, 2020, 10, 716.	3.3	20
58	The ventral striatum. , 2009, , 51-77.		17
59	Social behavioral changes in MPTP-treated monkey model of Parkinson's disease. Frontiers in Behavioral Neuroscience, 2015, 9, 42.	2.0	17
60	Preclinical evaluation of [18F]2FNQ1P as the first fluorinated serotonin 5-HT6 radioligand for PET imaging. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 495-502.	6.4	17
61	Pathophysiology of levodopa-induced dyskinesia: Insights from multimodal imaging and immunohistochemistry in non-human primates. NeuroImage, 2018, 183, 132-141.	4.2	17
62	Neural encoding of choice during a delayed response task in primate striatum and orbitofrontal cortex. Experimental Brain Research, 2018, 236, 1679-1688.	1.5	16
63	Discontinuous Long-Train Stimulation in the Anterior Striatum in Monkeys Induces Abnormal Behavioral States. Cerebral Cortex, 2011, 21, 2733-2741.	2.9	15
64	Dopamine and serotonin modulation of motor and non-motor functions of the non-human primate striato-pallidal circuits in normal and pathological states. Journal of Neural Transmission, 2018, 125, 485-500.	2.8	15
65	Cortical areas involved in behavioral expression of external pallidum dysfunctions: A PET imaging study in non-human primates. NeuroImage, 2017, 146, 1025-1037.	4.2	14
66	Limbic Serotonergic Plasticity Contributes to the Compensation of Apathy in Early Parkinson's Disease. Movement Disorders, 2022, 37, 1211-1221.	3.9	14
67	Representation of Spatial- and Object-Specific Behavioral Goals in the Dorsal Globus Pallidus of Monkeys during Reaching Movement. Journal of Neuroscience, 2013, 33, 16360-16371.	3.6	13
68	Pathophysiology of dyskinesia and behavioral disorders in non-human primates: the role of serotonergic fibers. Journal of Neural Transmission, 2018, 125, 1145-1156.	2.8	11
69	Characterization and Reliability of [18F]2FNQ1P in Cynomolgus Monkeys as a PET Radiotracer for Serotonin 5-HT6 Receptors. Frontiers in Pharmacology, 2017, 8, 471.	3.5	10
70	The Anterior Caudate Nucleus Supports Impulsive Choices Triggered by Pramipexole. Movement Disorders, 2020, 35, 296-305.	3.9	10
71	Dopaminergic innervation of the pallidum in the normal state, in MPTP-treated monkeys and in parkinsonian patients. European Journal of Neuroscience, 2000, 12, 4525-4535.	2.6	10
72	Diffusion tensor imaging marks dopaminergic and serotonergic lesions in the Parkinsonian monkey. Movement Disorders, 2018, 33, 298-309.	3.9	9

#	Article	IF	CITATIONS
73	Pain behavior without pain sensation: an epileptic syndrome of "symbolism for pain�. Pain, 2020, 161, 502-508.	4.2	9
74	Historical crossroads in the conceptual delineation of apathy in Parkinson's disease. Brain, 2018, 141, 613-619.	7.6	8
75	Selective serotonin reuptake inhibitor treatment retunes emotional valence in primate ventral striatum. Neuropsychopharmacology, 2021, 46, 2073-2082.	5.4	6
76	Local Field Potentials Reflect Dopaminergic and Non-Dopaminergic Activities within the Primate Midbrain. Neuroscience, 2019, 399, 167-183.	2.3	5
77	Visuomotor signals for reaching movements in the rostroâ€dorsal sector of the monkey thalamic reticular nucleus. European Journal of Neuroscience, 2017, 45, 1186-1199.	2.6	4
78	Complementarity of the Two Pallidal Segments in the Primate. Advances in Behavioral Biology, 1991, , 73-79.	0.2	2
79	Primate brain template image and reference atlas creation for voxel-based functional analysis of PET in Macaca fascicularis. NeuroImage, 2010, 52, S174-S175.	4.2	0
80	Involvement of the lateral prefrontal cortex (LPFC), dorsal premotor cortex (PMd), and primary motor cortex (MI) of macaques in action selection based on self-determined virtual action plan. Neuroscience Research, 2011, 71, e345.	1.9	0
81	Effects of dopamine depletion on reward-seeking behavior. , 2009, , 271-289.		Ο