Lawrence N Kwong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1614603/publications.pdf Version: 2024-02-01

LANDENCE N KWONG

#	Article	IF	CITATIONS
1	Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell, 2018, 173, 321-337.e10.	28.9	2,111
2	Loss of PTEN Promotes Resistance to T Cell–Mediated Immunotherapy. Cancer Discovery, 2016, 6, 202-216.	9.4	1,158
3	Analysis of Immune Signatures in Longitudinal Tumor Samples Yields Insight into Biomarkers of Response and Mechanisms of Resistance to Immune Checkpoint Blockade. Cancer Discovery, 2016, 6, 827-837.	9.4	785
4	Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles. Cell Reports, 2017, 18, 2780-2794.	6.4	416
5	Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma. Nature Medicine, 2012, 18, 1503-1510.	30.7	333
6	Passenger deletions generate therapeutic vulnerabilities in cancer. Nature, 2012, 488, 337-342.	27.8	294
7	APC and Its Modifiers in Colon Cancer. Advances in Experimental Medicine and Biology, 2009, 656, 85-106.	1.6	214
8	Integrative Genome Comparison of Primary and Metastatic Melanomas. PLoS ONE, 2010, 5, e10770.	2.5	166
9	Systematic identification of signaling pathways with potential to confer anticancer drug resistance. Science Signaling, 2014, 7, ra121.	3.6	163
10	Non-germline genetically engineered mouse models for translational cancer research. Nature Reviews Cancer, 2010, 10, 470-480.	28.4	161
11	A target-selected Apc-mutant rat kindred enhances the modeling of familial human colon cancer. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4036-4041.	7.1	143
12	Oncogenic <i>Kras</i> drives invasion and maintains metastases in colorectal cancer. Genes and Development, 2017, 31, 370-382.	5.9	137
13	A Pan-Cancer Analysis Reveals High-Frequency Genetic Alterations in Mediators of Signaling by the TGF-1² Superfamily. Cell Systems, 2018, 7, 422-437.e7.	6.2	134
14	Co-clinical assessment identifies patterns of BRAF inhibitor resistance in melanoma. Journal of Clinical Investigation, 2015, 125, 1459-1470.	8.2	106
15	Synthetic vulnerabilities of mesenchymal subpopulations in pancreatic cancer. Nature, 2017, 542, 362-366.	27.8	105
16	Efficacy of the combination of MEK and CDK4/6 inhibitors <i>in vitro</i> and <i>in vivo</i> in KRAS mutant colorectal cancer models. Oncotarget, 2016, 7, 39595-39608.	1.8	101
17	microRNA Regulatory Network Inference Identifies miR-34a as a Novel Regulator of TGF-Î ² Signaling in Glioblastoma. Cancer Discovery, 2012, 2, 736-749.	9.4	99
18	Genomic Profiling of Biliary Tract Cancers and Implications for Clinical Practice. Current Treatment Options in Oncology, 2016, 17, 58.	3.0	88

LAWRENCE N KWONG

#	Article	IF	CITATIONS
19	Navigating the Therapeutic Complexity of PI3K Pathway Inhibition in Melanoma. Clinical Cancer Research, 2013, 19, 5310-5319.	7.0	78
20	A Fatty Acid Oxidation-dependent Metabolic Shift Regulates the Adaptation of <i>BRAF</i> -mutated Melanoma to MAPK Inhibitors. Clinical Cancer Research, 2019, 25, 6852-6867.	7.0	74
21	Context-dependent miR-204 and miR-211 affect the biological properties of amelanotic and melanotic melanoma cells. Oncotarget, 2017, 8, 25395-25417.	1.8	64
22	<i>In Vivo</i> E2F Reporting Reveals Efficacious Schedules of MEK1/2–CDK4/6 Targeting and mTOR–S6 Resistance Mechanisms. Cancer Discovery, 2018, 8, 568-581.	9.4	62
23	Dual Roles of RNF2 in Melanoma Progression. Cancer Discovery, 2015, 5, 1314-1327.	9.4	57
24	Limitations and opportunities of technologies for the analysis of cell-free DNA in cancer diagnostics. Nature Biomedical Engineering, 2022, 6, 232-245.	22.5	56
25	A Preexisting Rare <i>PIK3CA</i> E545K Subpopulation Confers Clinical Resistance to MEK plus CDK4/6 Inhibition in <i>NRAS</i> Melanoma and Is Dependent on S6K1 Signaling. Cancer Discovery, 2018, 8, 556-567.	9.4	55
26	Oncogenic BRAF-Mediated Melanoma Cell Invasion. Cell Reports, 2016, 15, 2012-2024.	6.4	46
27	Identification of Mom7, a Novel Modifier of ApcMin/+ on Mouse Chromosome 18. Genetics, 2007, 176, 1237-1244.	2.9	43
28	MAPK Pathway Inhibitors Sensitize BRAF-Mutant Melanoma to an Antibody-Drug Conjugate Targeting GPNMB. Clinical Cancer Research, 2016, 22, 6088-6098.	7.0	43
29	miRNAs, Melanoma and Microenvironment: An Intricate Network. International Journal of Molecular Sciences, 2017, 18, 2354.	4.1	43
30	Clinical Profiling of BCL-2 Family Members in the Setting of BRAF Inhibition Offers a Rationale for Targeting De Novo Resistance Using BH3 Mimetics. PLoS ONE, 2014, 9, e101286.	2.5	42
31	Intrahepatic Cholangiocarcinoma: Genomic Heterogeneity Between Eastern and Western Patients. JCO Precision Oncology, 2020, 4, 557-569.	3.0	35
32	Topical Fibronectin Improves Wound Healing of Irradiated Skin. Scientific Reports, 2017, 7, 3876.	3.3	33
33	Targeting mTOR signaling overcomes acquired resistance to combined BRAF and MEK inhibition in BRAF-mutant melanoma. Oncogene, 2021, 40, 5590-5599.	5.9	33
34	The immunogenomic landscape of resected intrahepatic cholangiocarcinoma. Hepatology, 2022, 75, 297-308.	7.3	32
35	Loss of the transforming growth factorâ€Î² effector β2â€Spectrin promotes genomic instability. Hepatology, 2017, 65, 678-693.	7.3	31
36	Diagnostic and therapeutic applications of miRNA-based strategies to cancer immunotherapy. Cancer and Metastasis Reviews, 2018, 37, 45-53.	5.9	30

LAWRENCE N KWONG

#	Article	IF	CITATIONS
37	Cerebral White Matter Lesions in Patients with Crohn's Disease. Journal of Neuroimaging, 2012, 22, 38-41.	2.0	29
38	Induction of Telomere Dysfunction Prolongs Disease Control of Therapy-Resistant Melanoma. Clinical Cancer Research, 2018, 24, 4771-4784.	7.0	29
39	Crosstalk between the Notch signaling pathway and long non-coding RNAs. Cancer Letters, 2018, 420, 91-96.	7.2	26
40	Genomic profiling reveals high frequency of DNA repair genetic aberrations in gallbladder cancer. Scientific Reports, 2020, 10, 22087.	3.3	21
41	The path to metastatic mouse models of colorectal cancer. Oncogene, 2018, 37, 2481-2489.	5.9	20
42	The Brothers RAF. Cell, 2010, 140, 180-182.	28.9	19
43	Biological Validation of RNA Sequencing Data From Formalin-Fixed Paraffin-Embedded Primary Melanomas. JCO Precision Oncology, 2018, 2018, 1-19.	3.0	19
44	Genomic Sequencing and Insight into Clinical Heterogeneity and Prognostic Pathway Genes in Patients with Metastatic Colorectal Cancer. Journal of the American College of Surgeons, 2021, 233, 272-284e13.	0.5	18
45	Advances in cholangiocarcinoma research: report from the third Cholangiocarcinoma Foundation Annual Conference. Journal of Gastrointestinal Oncology, 2016, 7, 819-827.	1.4	17
46	Growth Factors and Oncogenes as Targets in Melanoma: Lost inÂTranslation?. Advances in Dermatology, 2007, 23, 99-129.	2.0	16
47	The Metastasis Problem Gets Stickier. Cancer Cell, 2009, 15, 1-2.	16.8	16
48	Chromosome 10, Frequently Lost in Human Melanoma, Encodes Multiple Tumor-Suppressive Functions. Cancer Research, 2014, 74, 1814-1821.	0.9	15
49	Somatic Copy Number Alterations at Oncogenic Loci Show Diverse Correlations with Gene Expression. Scientific Reports, 2016, 6, 19649.	3.3	15
50	Modeling Genomic Instability and Selection Pressure in a Mouse Model of Melanoma. Cell Reports, 2017, 19, 1304-1312.	6.4	14
51	Seizure burden pre- and postresection of low-grade gliomas as a predictor of tumor progression in low-grade gliomas. Neuro-Oncology Practice, 2019, 6, 209-217.	1.6	14
52	High sensitivity sanger sequencing detection of BRAF mutations in metastatic melanoma FFPE tissue specimens. Scientific Reports, 2021, 11, 9043.	3.3	13
53	Oncogene Concatenated Enriched Amplicon Nanopore Sequencing for rapid, accurate, and affordable somatic mutation detection. Genome Biology, 2021, 22, 227.	8.8	13
54	Calibration-free NGS quantitation of mutations below 0.01% VAF. Nature Communications, 2021, 12, 6123.	12.8	13

LAWRENCE N KWONG

#	Article	IF	CITATIONS
55	Insights Into the Origin of Intrahepatic Cholangiocarcinoma From Mouse Models. Hepatology, 2020, 72, 305-314.	7.3	10
56	Monitoring of Dynamic Changes and Clonal Evolution in Circulating Tumor DNA From Patients With <i>IDH</i> -Mutated Cholangiocarcinoma Treated With Isocitrate Dehydrogenase Inhibitors. JCO Precision Oncology, 2022, 6, e2100197.	3.0	10
57	Neural Crest-Like Stem Cell Transcriptome Analysis Identifies LPAR1 in Melanoma Progression and Therapy Resistance. Cancer Research, 2021, 81, 5230-5241.	0.9	9
58	Accurate quantification of PGE 2 in the polyposis in rat colon (Pirc) model by surrogate analyte-based UPLC–MS/MS. Journal of Pharmaceutical and Biomedical Analysis, 2018, 148, 42-50.	2.8	8
59	Cholangiocarcinoma Risk Factors Open the Floodgates for Gut Microbes and Immunosuppressive Myeloid Cells. Cancer Discovery, 2021, 11, 1014-1015.	9.4	6
60	A Systems Biology Approach to Personalizing Therapeutic Combinations. Cancer Discovery, 2013, 3, 1339-1344.	9.4	4
61	Same Name, Different Game: EGFR Drives Intrinsic KRASG12C Inhibitor Resistance in Colorectal Cancer. Cancer Discovery, 2020, 10, 1094-1096.	9.4	3
62	Generation of An Endogenous FGFR2–BICC1 Gene Fusion/58 Megabase Inversion Using Single-Plasmid CRISPR/Cas9 Editing in Biliary Cells. International Journal of Molecular Sciences, 2020, 21, 2460.	4.1	3
63	BRAF Dimerization: An Underlying Resistance Mechanism in Low-Grade Pediatric Gliomas. Cancer Discovery, 2018, 8, 1064-1065.	9.4	0
64	IDH1 Inhibition Reawakens the Immune Response against Cholangiocarcinoma. Cancer Discovery, 2022, 12, 604-605.	9.4	0
65	Cost-Efficient Sequence-Based Nonextensible Oligonucleotide in Real-Time PCR and High-Throughput Sequencing. ACS Sensors, 2022, 7, 1165-1174.	7.8	0