Boris I Yakobson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1614243/publications.pdf

Version: 2024-02-01

396 papers 50,815 citations

110 h-index 215 g-index

415 all docs

415 docs citations

415 times ranked 38099 citing authors

#	Article	IF	CITATIONS
1	Nanomechanics of Carbon Tubes: Instabilities beyond Linear Response. Physical Review Letters, 1996, 76, 2511-2514.	7.8	2,450
2	Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers. Nano Letters, 2010, 10, 3209-3215.	9.1	2,317
3	Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nature Materials, 2014, 13, 1135-1142.	27.5	1,918
4	Intrinsic Structural Defects in Monolayer Molybdenum Disulfide. Nano Letters, 2013, 13, 2615-2622.	9.1	1,766
5	Laser-induced porous graphene films from commercial polymers. Nature Communications, 2014, 5, 5714.	12.8	1,645
6	Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nature Materials, 2013, 12, 754-759.	27.5	1,590
7	A library of atomically thin metal chalcogenides. Nature, 2018, 556, 355-359.	27.8	1,225
8	The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper. Science, 2013, 342, 720-723.	12.6	977
9	C2F,BN, and C nanoshell elasticity fromab initiocomputations. Physical Review B, 2001, 64, .	3.2	948
10	A review on mechanics and mechanical properties of 2D materialsâ€"Graphene and beyond. Extreme Mechanics Letters, 2017, 13, 42-77.	4.1	920
11	Quasiparticle band structures and optical properties of strained monolayer MoS <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> and WS <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow xmlns:msub=""><mml:mrow xmlns:msub=""><mml:mrow xmlns:msub=""><mml:mrow xmlns:msub=""><mml:mrow xmlns:msub=""><mml:msub><mml:mrow xmlns:msub=""><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msu< td=""><td>3.2</td><td>764</td></mml:msu<></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:math>	3.2	764
12	Achieving Highly Efficient, Selective, and Stable CO ₂ Reduction on Nitrogen-Doped Carbon Nanotubes. ACS Nano, 2015, 9, 5364-5371.	14.6	546
13	Polymorphism of Two-Dimensional Boron. Nano Letters, 2012, 12, 2441-2445.	9.1	545
14	High strain rate fracture and C-chain unraveling in carbon nanotubes. Computational Materials Science, 1997, 8, 341-348.	3.0	475
15	Brittle and Ductile Behavior in Carbon Nanotubes. Physical Review Letters, 1998, 81, 4656-4659.	7.8	475
16	Controlled nanocutting of graphene. Nano Research, 2008, 1, 116-122.	10.4	472
17	Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nature Communications, 2014, 5, 5246.	12.8	453
18	Mechanism of strain release in carbon nanotubes. Physical Review B, 1998, 57, R4277-R4280.	3.2	441

#	Article	IF	CITATIONS
19	Gram-scale bottom-up flash graphene synthesis. Nature, 2020, 577, 647-651.	27.8	438
20	Incorporation of Nitrogen Defects for Efficient Reduction of CO ₂ via Two-Electron Pathway on Three-Dimensional Graphene Foam. Nano Letters, 2016, 16, 466-470.	9.1	435
21	Single-Atomic Ruthenium Catalytic Sites on Nitrogen-Doped Graphene for Oxygen Reduction Reaction in Acidic Medium. ACS Nano, 2017, 11, 6930-6941.	14.6	435
22	B80Fullerene: AnAbÂlnitioPrediction of Geometry, Stability, and Electronic Structure. Physical Review Letters, 2007, 98, 166804.	7.8	416
23	Wafer-scale single-crystal hexagonal boron nitride monolayers on CuÂ(111). Nature, 2020, 579, 219-223.	27.8	409
24	Borophene as a prototype for synthetic 2D materials development. Nature Nanotechnology, 2018, 13, 444-450.	31.5	392
25	Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications. ACS Nano, 2018, 12, 11756-11784.	14.6	388
26	Nitrogenâ€Doped Carbon Nanotube Arrays for Highâ€Efficiency Electrochemical Reduction of CO ₂ : On the Understanding of Defects, Defect Density, and Selectivity. Angewandte Chemie - International Edition, 2015, 54, 13701-13705.	13.8	382
27	Carbon nanotubeâ€enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer, 2007, 110, 2654-2665.	4.1	381
28	Can Two-Dimensional Boron Superconduct?. Nano Letters, 2016, 16, 2522-2526.	9.1	380
29	Carbyne from First Principles: Chain of C Atoms, a Nanorod or a Nanorope. ACS Nano, 2013, 7, 10075-10082.	14.6	375
30	Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes. Journal of the Mechanics and Physics of Solids, 2008, 56, 3475-3485.	4.8	369
31	Electrochemical CO ₂ Reduction with Atomic Ironâ€Dispersed on Nitrogenâ€Doped Graphene. Advanced Energy Materials, 2018, 8, 1703487.	19.5	369
32	Controlled Sliding and Pullout of Nested Shells in Individual Multiwalled Carbon Nanotubes. Journal of Physical Chemistry B, 2000, 104, 8764-8767.	2.6	363
33	Mechanical Properties of Carbon Nanotubes. , 2001, , 287-327.		357
34	Self-optimizing, highly surface-active layeredÂmetal dichalcogenide catalysts for hydrogen evolution. Nature Energy, 2017, 2, .	39.5	336
35	Mechanical relaxation and "intramolecular plasticity―in carbon nanotubes. Applied Physics Letters, 1998, 72, 918-920.	3.3	326
36	Graphene Nucleation on Transition Metal Surface: Structure Transformation and Role of the Metal Step Edge. Journal of the American Chemical Society, 2011, 133, 5009-5015.	13.7	315

#	Article	IF	Citations
37	Cones, Pringles, and Grain Boundary Landscapes in Graphene Topology. Nano Letters, 2010, 10, 2178-2183.	9.1	314
38	Predicting Dislocations and Grain Boundaries in Two-Dimensional Metal-Disulfides from the First Principles. Nano Letters, 2013, 13, 253-258.	9.1	310
39	Highâ€Performance Hydrogen Evolution from MoS _{2(1–<i>x</i>)} P <i>_x</i> Solid Solution. Advanced Materials, 2016, 28, 1427-1432.	21.0	309
40	BN White Graphene with "Colorful―Edges: The Energies and Morphology. Nano Letters, 2011, 11, 3113-3116.	9.1	301
41	Dislocation theory of chirality-controlled nanotube growth. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2506-2509.	7.1	297
42	Feasibility of Lithium Storage on Graphene and Its Derivatives. Journal of Physical Chemistry Letters, 2013, 4, 1737-1742.	4.6	297
43	Two-dimensional boron: structures, properties and applications. Chemical Society Reviews, 2017, 46, 6746-6763.	38.1	296
44	Twoâ€Dimensional Boron Monolayers Mediated by Metal Substrates. Angewandte Chemie - International Edition, 2015, 54, 13022-13026.	13.8	288
45	Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene. Nature Nanotechnology, 2016, 11, 426-431.	31.5	287
46	Probing the Synthesis of Twoâ€Dimensional Boron by Firstâ€Principles Computations. Angewandte Chemie - International Edition, 2013, 52, 3156-3159.	13.8	274
47	Borophene Synthesis on Au(111). ACS Nano, 2019, 13, 3816-3822.	14.6	261
48	Fullerene Nanocage Capacity for Hydrogen Storage. Nano Letters, 2008, 8, 767-774.	9.1	246
49	Elasticity, Flexibility, and Ideal Strength of Borophenes. Advanced Functional Materials, 2017, 27, 1605059.	14.9	237
50	Equilibrium at the edge and atomistic mechanisms of graphene growth. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15136-15140.	7.1	236
51	Electronics and Magnetism of Patterned Graphene Nanoroads. Nano Letters, 2009, 9, 1540-1543.	9.1	235
52	Role of Hydrogen in Graphene Chemical Vapor Deposition Growth on a Copper Surface. Journal of the American Chemical Society, 2014, 136, 3040-3047.	13.7	234
53	In situ observation of graphene sublimation and multi-layer edge reconstructions. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10103-10108.	7.1	232
54	Intrinsic Magnetism of Grain Boundaries in Two-Dimensional Metal Dichalcogenides. ACS Nano, 2013, 7, 10475-10481.	14.6	232

#	Article	IF	CITATIONS
55	Symmetry-, time-, and temperature-dependent strength of carbon nanotubes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6105-6109.	7.1	229
56	Electro-mechanical anisotropy of phosphorene. Nanoscale, 2015, 7, 9746-9751.	5.6	223
57	Boron- and Nitrogen-Substituted Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction Reaction. Chemistry of Materials, 2015, 27, 1181-1186.	6.7	219
58	Dislocations and Grain Boundaries in Two-Dimensional Boron Nitride. ACS Nano, 2012, 6, 7053-7058.	14.6	216
59	Evolutionary selection growth of two-dimensional materials on polycrystalline substrates. Nature Materials, 2018, 17, 318-322.	27.5	204
60	Curvature-induced polarization in carbon nanoshells. Chemical Physics Letters, 2002, 360, 182-188.	2.6	200
61	Ripping Graphene: Preferred Directions. Nano Letters, 2012, 12, 293-297.	9.1	200
62	Direct chemical conversion of graphene to boron- and nitrogen- and carbon-containing atomic layers. Nature Communications, 2014, 5, 3193.	12.8	198
63	In situ evidence for chirality-dependent growth rates of individual carbon nanotubes. Nature Materials, 2012, 11, 213-216.	27.5	195
64	Dislocation motion and grain boundary migration in two-dimensional tungsten disulphide. Nature Communications, 2014, 5, 4867.	12.8	192
65	Ballistic Thermal Conductance of Graphene Ribbons. Nano Letters, 2010, 10, 1652-1656.	9.1	190
66	Two-Dimensional Tetragonal TiC Monolayer Sheet and Nanoribbons. Journal of the American Chemical Society, 2012, 134, 19326-19329.	13.7	186
67	Two-Dimensional Mono-Elemental Semiconductor with Electronically Inactive Defects: The Case of Phosphorus. Nano Letters, 2014, 14, 6782-6786.	9.1	186
68	Quaternary 2D Transition Metal Dichalcogenides (TMDs) with Tunable Bandgap. Advanced Materials, 2017, 29, 1702457.	21.0	186
69	Photoluminescence Quenching and Charge Transfer in Artificial Heterostacks of Monolayer Transition Metal Dichalcogenides and Few-Layer Black Phosphorus. ACS Nano, 2015, 9, 555-563.	14.6	183
70	Type-II Multiferroic Hf ₂ VC ₂ F ₂ MXene Monolayer with High Transition Temperature. Journal of the American Chemical Society, 2018, 140, 9768-9773.	13.7	179
71	Predicting Two-Dimensional Silicon Carbide Monolayers. ACS Nano, 2015, 9, 9802-9809.	14.6	177
72	Graphene Edge from Armchair to Zigzag: The Origins of Nanotube Chirality?. Physical Review Letters, 2010, 105, 235502.	7.8	174

#	Article	IF	Citations
73	Pseudo Hall–Petch Strength Reduction in Polycrystalline Graphene. Nano Letters, 2013, 13, 1829-1833.	9.1	172
74	Self-gating in semiconductor electrocatalysis. Nature Materials, 2019, 18, 1098-1104.	2 7. 5	167
75	The future of the fullerenes. Solid State Communications, 1998, 107, 597-606.	1.9	164
76	Consistent methodology for calculating surface and interface energies. Physical Review B, 1998, 57, 7281-7291.	3.2	161
77	Clustering of Sc on SWNT and Reduction of Hydrogen Uptake: <i>Ab-Initio</i> All-Electron Calculations. Journal of Physical Chemistry C, 2007, 111, 17977-17980.	3.1	159
78	Why nanotubes grow chiral. Nature Communications, 2014, 5, 4892.	12.8	158
79	Spontaneous twist and intrinsic instabilities of pristine graphene nanoribbons. Nano Research, 2009, 2, 161-166.	10.4	157
80	Hydrogen storage by spillover on graphene as a phase nucleation process. Physical Review B, 2008, 78, .	3.2	155
81	Substrate-Induced Nanoscale Undulations of Borophene on Silver. Nano Letters, 2016, 16, 6622-6627.	9.1	155
82	Phase Diagram of Quasi-Two-Dimensional Carbon, From Graphene to Diamond. Nano Letters, 2014, 14, 676-681.	9.1	154
83	Engineering grain boundaries at theÂ2D limit for theÂhydrogen evolution reaction. Nature Communications, 2020, 11, 57.	12.8	153
84	Two-Dimensional SiS Layers with Promising Electronic and Optoelectronic Properties: Theoretical Prediction. Nano Letters, 2016, 16, 1110-1117.	9.1	149
85	Atomic H-Induced Mo ₂ C Hybrid as an Active and Stable Bifunctional Electrocatalyst. ACS Nano, 2017, 11, 384-394.	14.6	149
86	Polyphony in B flat. Nature Chemistry, 2016, 8, 525-527.	13.6	148
87	Nanomechanical cleavage of molybdenum disulphide atomic layers. Nature Communications, 2014, 5, 3631.	12.8	144
88	Probing Properties of Boron α-Tubes by <i>Ab Initio</i> Calculations. Nano Letters, 2008, 8, 1314-1317.	9.1	140
89	Borophene synthesis beyond the single-atomic-layer limit. Nature Materials, 2022, 21, 35-40.	27.5	137
90	Quantum Dots and Nanoroads of Graphene Embedded in Hexagonal Boron Nitride. Journal of Physical Chemistry C, 2011, 115, 9889-9893.	3.1	135

#	Article	IF	Citations
91	Two-Dimensional Boron Polymorphs for Visible Range Plasmonics: A First-Principles Exploration. Journal of the American Chemical Society, 2017, 139, 17181-17185.	13.7	135
92	Highly Itinerant Atomic Vacancies in Phosphorene. Journal of the American Chemical Society, 2016, 138, 10199-10206.	13.7	134
93	Mechanically induced defects and strength of BN nanotubes. Physical Review B, 2002, 65, .	3.2	132
94	Strong ferromagnetism in hydrogenated monolayer MoS <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> tuned by strain. Physical Review B, 2013, 88, .	3.2	130
95	Mechanically Induced Metal–Insulator Transition in Carbyne. Nano Letters, 2014, 14, 4224-4229.	9.1	130
96	Oral vaccination of wildlife using a vaccinia–rabies-glycoprotein recombinant virus vaccine (RABORAL V-RG®): a global review. Veterinary Research, 2017, 48, 57.	3.0	130
97	Tailoring the Physical Properties of Molybdenum Disulfide Monolayers by Control of Interfacial Chemistry. Nano Letters, 2014, 14, 1354-1361.	9.1	129
98	How Nitrogen-Doped Graphene Quantum Dots Catalyze Electroreduction of CO ₂ to Hydrocarbons and Oxygenates. ACS Catalysis, 2017, 7, 6245-6250.	11.2	129
99	Intermixing and periodic self-assembly of borophene line defects. Nature Materials, 2018, 17, 783-788.	27.5	129
100	H-Spillover through the Catalyst Saturation: An <i>Ab Initio</i> Thermodynamics Study. ACS Nano, 2009, 3, 1657-1662.	14.6	127
101	Oxygen breaks into carbon world. Nature, 2006, 441, 818-819.	27.8	126
102	Growth Mechanism and Morphology of Hexagonal Boron Nitride. Nano Letters, 2016, 16, 1398-1403.	9.1	123
103	Scratching the Surface of Buckminsterfullerene:Â The Barriers for Stoneâ [*] Wales Transformation through Symmetric and Asymmetric Transition States. Journal of the American Chemical Society, 2003, 125, 5572-5580.	13.7	122
104	Engineering electronic properties of layered transition-metal dichalcogenide compounds through alloying. Nanoscale, 2014, 6, 5820-5825.	5.6	122
105	Strain-Induced Electronic Structure Changes in Stacked van der Waals Heterostructures. Nano Letters, 2016, 16, 3314-3320.	9.1	122
106	Patterning nanoroads and quantum dots on fluorinated graphene. Nano Research, 2011, 4, 143-152.	10.4	120
107	Pseudoclimb and Dislocation Dynamics in Superplastic Nanotubes. Physical Review Letters, 2007, 98, 075503.	7.8	119
108	Vacancy Clusters in Graphane as Quantum Dots. ACS Nano, 2010, 4, 3510-3514.	14.6	119

#	Article	IF	Citations
109	An Open Canvas—2D Materials with Defects, Disorder, and Functionality. Accounts of Chemical Research, 2015, 48, 73-80.	15.6	119
110	Thickness-dependent patterning of MoS2 sheets with well-oriented triangular pits by heating in air. Nano Research, 2013, 6, 703-711.	10.4	118
111	Grain Boundary Structures and Electronic Properties of Hexagonal Boron Nitride on Cu(111). Nano Letters, 2015, 15, 5804-5810.	9.1	117
112	Electronic transport through bent carbon nanotubes: Nanoelectromechanical sensors and switches. Physical Review B, 2003, 67, .	3.2	114
113	Kinetic Theory of Symmetry-Dependent Strength in Carbon Nanotubes. Physical Review Letters, 2002, 88, 065501.	7.8	110
114	Bond-breaking bifurcation states in carbon nanotube fracture. Journal of Chemical Physics, 2003, 118, 9485-9488.	3.0	110
115	Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light–Matter Interactions. Advanced Materials, 2015, 27, 7800-7808.	21.0	109
116	What is the Ground-State Structure of the Thinnest Si Nanowires?. Physical Review Letters, 2003, 91, 035501.	7.8	108
117	Observational Geology of Graphene, at the Nanoscale. ACS Nano, 2011, 5, 1569-1574.	14.6	108
118	High Performance Electrocatalytic Reaction of Hydrogen and Oxygen on Ruthenium Nanoclusters. ACS Applied Materials & Samp; Interfaces, 2017, 9, 3785-3791.	8.0	108
119	Atomistic theory of mechanical relaxation in fullerene nanotubes. Carbon, 2000, 38, 1675-1680.	10.3	107
120	Building a stable cationic molecule/electrode interface for highly efficient and durable CO ₂ reduction at an industrially relevant current. Energy and Environmental Science, 2021, 14, 483-492.	30.8	101
121	Efficient Defect Healing in Catalytic Carbon Nanotube Growth. Physical Review Letters, 2012, 108, 245505.	7.8	100
122	How Evaporating Carbon Nanotubes Retain Their Perfection?. Nano Letters, 2007, 7, 681-684.	9.1	99
123	Calcium-Decorated Carbyne Networks as Hydrogen Storage Media. Nano Letters, 2011, 11, 2660-2665.	9.1	98
124	Hydrogen Peroxide Generation with 100% Faradaic Efficiency on Metal-Free Carbon Black. ACS Catalysis, 2021, 11, 2454-2459.	11.2	98
125	Strong interfacial coupling of MoS2/g-C3N4 van de Waals solids for highly active water reduction. Nano Energy, 2016, 27, 44-50.	16.0	96
126	Direct and Indirect Interlayer Excitons in a van der Waals Heterostructure of hBN/WS ₂ /MoS ₂ /hBN. ACS Nano, 2018, 12, 2498-2505.	14.6	96

#	Article	IF	CITATIONS
127	Oxidized Laserâ€Induced Graphene for Efficient Oxygen Electrocatalysis. Advanced Materials, 2018, 30, e1707319.	21.0	94
128	Assessing Carbon-Based Anodes for Lithium-Ion Batteries: A Universal Description of Charge-Transfer Binding. Physical Review Letters, 2014, 113, 028304.	7.8	93
129	Atomic Ru Immobilized on Porous h-BN through Simple Vacuum Filtration for Highly Active and Selective CO ₂ Methanation. ACS Catalysis, 2019, 9, 10077-10086.	11.2	93
130	How Graphene Islands Are Unidirectionally Aligned on the Ge(110) Surface. Nano Letters, 2016, 16, 3160-3165.	9.1	92
131	Interface Toughness of Carbon Nanotube Reinforced Epoxy Composites. ACS Applied Materials & Amp; Interfaces, 2011, 3, 129-134.	8.0	91
132	An Anomalous Formation Pathway for Dislocation-Sulfur Vacancy Complexes in Polycrystalline Monolayer MoS ₂ . Nano Letters, 2015, 15, 6855-6861.	9.1	90
133	Riemann Surfaces of Carbon as Graphene Nanosolenoids. Nano Letters, 2016, 16, 34-39.	9.1	88
134	Predicting stable phase monolayer Mo ₂ C (MXene), a superconductor with chemically-tunable critical temperature. Journal of Materials Chemistry C, 2017, 5, 3438-3444.	5.5	88
135	Endohedral silicon nanotubes as thinnest silicide wires. Physical Review B, 2004, 70, .	3.2	87
136	Real Time Microscopy, Kinetics, and Mechanism of Giant Fullerene Evaporation. Physical Review Letters, 2007, 99, 175503.	7.8	87
137	Manyâ€body and spinâ€orbit effects on directâ€indirect band gap transition of strained monolayer MoS ₂ and WS ₂ . Annalen Der Physik, 2014, 526, L7.	2.4	87
138	Dynamic Topology of Fullerene Coalescence. Physical Review Letters, 2002, 88, 185501.	7.8	86
139	Influence of Size Effect on the Electronic and Elastic Properties of Diamond Films with Nanometer Thickness. Journal of Physical Chemistry C, 2011, 115, 132-136.	3.1	82
140	First-Principles Studies of Li Nucleation on Graphene. Journal of Physical Chemistry Letters, 2014, 5, 1225-1229.	4.6	82
141	Large Hexagonal Bi―and Trilayer Graphene Single Crystals with Varied Interlayer Rotations. Angewandte Chemie - International Edition, 2014, 53, 1565-1569.	13.8	82
142	Mechanisms of the oxygen reduction reaction on B- and/or N-doped carbon nanomaterials with curvature and edge effects. Nanoscale, 2018, 10, 1129-1134.	5.6	81
143	Origins and effects of thermal processes on nearâ€field optical probes. Applied Physics Letters, 1995, 67, 2597-2599.	3.3	80
144	Flash Graphene Morphologies. ACS Nano, 2020, 14, 13691-13699.	14.6	78

#	Article	IF	Citations
145	Carrier Delocalization in Two-Dimensional Coplanar p–n Junctions of Graphene and Metal Dichalcogenides. Nano Letters, 2016, 16, 5032-5036.	9.1	77
146	Two-dimensional boron–nitrogen–carbon monolayers with tunable direct band gaps. Nanoscale, 2015, 7, 12023-12029.	5.6	74
147	An atomistic and non-classical continuum field theoretic perspective of elastic interactions between defects (force dipoles) of various symmetries and application to graphene. Journal of the Mechanics and Physics of Solids, 2006, 54, 2304-2329.	4.8	73
148	Energetics of Stone–Wales defects in deformations of monoatomic hexagonal layers. Computational Materials Science, 2002, 23, 62-72.	3.0	72
149	The ultimate diamond slab: GraphAne versus graphEne. Diamond and Related Materials, 2010, 19, 368-373.	3.9	71
150	Low Contact Barrier in 2H/1T′ MoTe ₂ In-Plane Heterostructure Synthesized by Chemical Vapor Deposition. ACS Applied Materials & Deposition.	8.0	70
151	Metal-assisted hydrogen storage on Pt-decorated single-walled carbon nanohorns. Carbon, 2012, 50, 4953-4964.	10.3	69
152	Thermodynamics of yield in boron nitride nanotubes. Physical Review B, 2003, 68, .	3.2	68
153	Breaking of Symmetry in Graphene Growth on Metal Substrates. Physical Review Letters, 2015, 114, 115502.	7.8	68
154	Flexoelectricity in Carbon Nanostructures: Nanotubes, Fullerenes, and Nanocones. Journal of Physical Chemistry Letters, 2015, 6, 2740-2744.	4.6	68
155	Defect-Detriment to Graphene Strength Is Concealed by Local Probe: The Topological and Geometrical Effects. ACS Nano, 2015, 9, 401-408.	14.6	66
156	Strain-rate and temperature dependent plastic yield in carbon nanotubes from ab initio calculations. Applied Physics Letters, 2004, 84, 2775-2777.	3.3	65
157	Closed-Edged Graphene Nanoribbons from Large-Diameter Collapsed Nanotubes. ACS Nano, 2012, 6, 6023-6032.	14.6	65
158	Geometric imaging of borophene polymorphs with functionalized probes. Nature Communications, 2019, 10, 1642.	12.8	65
159	Nanotube-derived carbon foam for hydrogen sorption. Journal of Chemical Physics, 2007, 127, 164703.	3.0	64
160	Nanomechanics of carbon honeycomb cellular structures. Carbon, 2017, 113, 26-32.	10.3	64
161	Two-Dimensional Diamond—Diamane: Current State and Further Prospects. Nano Letters, 2021, 21, 5475-5484.	9.1	64
162	Edge-Catalyst Wetting and Orientation Control of Graphene Growth by Chemical Vapor Deposition Growth. Journal of Physical Chemistry Letters, 2014, 5, 3093-3099.	4.6	63

#	Article	IF	CITATIONS
163	Layer Engineering of 2D Semiconductor Junctions. Advanced Materials, 2016, 28, 5126-5132.	21.0	63
164	How Much N-Doping Can Graphene Sustain?. Journal of Physical Chemistry Letters, 2015, 6, 106-112.	4.6	62
165	Nanotubes. Current Opinion in Solid State and Materials Science, 1997, 2, 706-715.	11.5	61
166	Coalescence of fullerene cages:â€fTopology, energetics, and molecular dynamics simulation. Physical Review B, 2002, 66, .	3.2	61
167	Challenges in hydrogen adsorptions: from physisorption to chemisorption. Frontiers of Physics, 2011, 6, 142-150.	5.0	61
168	Persistence Length and Nanomechanics of Random Bundles of Nanotubes. Journal of Nanoparticle Research, 2006, 8, 105-110.	1.9	60
169	Growing a Carbon Nanotube Atom by Atom: "And Yet It Does Turn― Nano Letters, 2009, 9, 2961-2966.	9.1	59
170	Nanotube nucleation versus carbon-catalyst adhesion–Probed by molecular dynamics simulations. Journal of Chemical Physics, 2009, 131, 224501.	3.0	59
171	Two-Level Quantum Systems in Two-Dimensional Materials for Single Photon Emission. Nano Letters, 2019, 19, 408-414.	9.1	59
172	New insights into the properties and interactions of carbon chains as revealed by HRTEM and DFT analysis. Carbon, 2014, 66, 436-441.	10.3	58
173	The Boron Buckyball and Its Precursors: An Electronic Structure Study. Journal of Physical Chemistry A, 2008, 112, 13679-13683.	2.5	57
174	Carbon Nanotube Nucleation Driven by Catalyst Morphology Dynamics. ACS Nano, 2011, 5, 10096-10101.	14.6	57
175	Dirac Cones and Nodal Line in Borophene. Journal of Physical Chemistry Letters, 2018, 9, 2757-2762.	4.6	56
176	Hexagonal Boron Nitride for Sulfur Corrosion Inhibition. ACS Nano, 2020, 14, 14809-14819.	14.6	56
177	Metallacarboranes: Toward Promising Hydrogen Storage Metal Organic Frameworks. Journal of the American Chemical Society, 2010, 132, 14126-14129.	13.7	55
178	Spiral Growth of SnSe ₂ Crystals by Chemical Vapor Deposition. Advanced Materials Interfaces, 2016, 3, 1600383.	3.7	55
179	How the Complementarity at Vicinal Steps Enables Growth of 2D Monocrystals. Nano Letters, 2019, 19, 2027-2031.	9.1	55
180	Selective Cap Opening in Carbon Nanotubes Driven by Laser-Induced Coherent Phonons. Physical Review Letters, 2004, 92, 117401.	7.8	54

#	Article	IF	Citations
181	Pushing the boundaries. Nature Materials, 2011, 10, 415-417.	27.5	54
182	Manganese deception on graphene and implications in catalysis. Carbon, 2018, 132, 623-631.	10.3	54
183	Interaction between graphene layers and the mechanisms of graphite's superlubricity and self-retraction. Nanoscale, 2013, 5, 6736.	5.6	53
184	Self-modulated band gap in boron nitride nanoribbons and hydrogenated sheets. Nanoscale, 2013, 5, 6381.	5.6	53
185	Thermomechanical analysis of two-dimensional boron monolayers. Physical Review B, 2016, 93, .	3.2	53
186	Evaluation of colony losses in Israel in relation to the incidence of pathogens and pests. Apidologie, 2011, 42, 192-199.	2.0	52
187	Zinc oxide–black phosphorus composites for ultrasensitive nitrogen dioxide sensing. Nanoscale Horizons, 2018, 3, 525-531.	8.0	52
188	Phase controlled synthesis of transition metal carbide nanocrystals by ultrafast flash Joule heating. Nature Communications, 2022, 13, 262.	12.8	52
189	Hydrogen Storage Capacity of Carbon-Foams: Grand Canonical Monte Carlo Simulations. Journal of Physical Chemistry C, 2011, 115, 2476-2482.	3.1	51
190	Low-Temperature Single-Wall Carbon Nanotubes Synthesis: Feedstock Decomposition Limited Growth. Journal of the American Chemical Society, 2008, 130, 11840-11841.	13.7	50
191	Unfolding the Fullerene: Nanotubes, Graphene and Polyâ€Elemental Varieties by Simulations. Advanced Materials, 2012, 24, 4956-4976.	21.0	50
192	In Pursuit of 2D Materials for Maximum Optical Response. ACS Nano, 2018, 12, 10880-10889.	14.6	50
193	Constructing metallic nanoroads on a MoS ₂ monolayer via hydrogenation. Nanoscale, 2014, 6, 1691-1697.	5.6	48
194	CO ₂ to Formic Acid Using Cu–Sn on Laser-Induced Graphene. ACS Applied Materials & Interfaces, 2020, 12, 41223-41229.	8.0	48
195	Millisecond Conversion of Metastable 2D Materials by Flash Joule Heating. ACS Nano, 2021, 15, 1282-1290.	14.6	48
196	Upright Standing Graphene Formation on Substrates. Journal of the American Chemical Society, 2011, 133, 16072-16079.	13.7	47
197	Near-equilibrium growth from borophene edges on silver. Science Advances, 2019, 5, eaax0246.	10.3	47
198	Fullerene shape transformations via Stone-Wales bond rotations. Physical Review B, 2003, 68, .	3.2	46

#	Article	IF	Citations
199	Topochemistry of Bowtie- and Star-Shaped Metal Dichalcogenide Nanoisland Formation. Nano Letters, 2016, 16, 3696-3702.	9.1	46
200	Strain tolerance of two-dimensional crystal growth on curved surfaces. Science Advances, 2019, 5, eaav4028.	10.3	46
201	Rate theory of yield in boron nitride nanotubes. Physical Review B, 2005, 72, .	3.2	45
202	Unraveling the Sinuous Grain Boundaries in Graphene. Advanced Functional Materials, 2015, 25, 367-373.	14.9	45
203	Growth of large-area aligned pentagonal graphene domains on high-index copper surfaces. Nano Research, 2016, 9, 2182-2189.	10.4	44
204	Exploring the interface between single-walled carbon nanotubes and epoxy resin. Carbon, 2016, 105, 600-606.	10.3	44
205	Gateâ€Voltage Control of Borophene Structure Formation. Angewandte Chemie - International Edition, 2017, 56, 15421-15426.	13.8	44
206	Room-Temperature Ferroelectricity in Group-IV Metal Chalcogenide Nanowires. Journal of the American Chemical Society, 2019, 141, 15040-15045.	13.7	44
207	Kinetic limits for sensing tip morphology in nearâ€field scanning optical microscopes. Journal of Applied Physics, 1993, 73, 7984-7986.	2.5	43
208	Metallic High-Angle Grain Boundaries in Monolayer Polycrystalline WS ₂ . Small, 2015, 11, 4503-4507.	10.0	43
209	Chemical Trends of Electronic Properties of Two-Dimensional Halide Perovskites and Their Potential Applications for Electronics and Optoelectronics. Journal of Physical Chemistry C, 2016, 120, 24682-24687.	3.1	41
210	Mechanochemistry of One-Dimensional Boron: Structural and Electronic Transitions. Journal of the American Chemical Society, 2017, 139, 2111-2117.	13.7	41
211	Earth-Abundant and Non-Toxic SiX (X = S, Se) Monolayers as Highly Efficient Thermoelectric Materials. Journal of Physical Chemistry C, 2017, 121, 123-128.	3.1	41
212	Interplay of Catalyst Size and Metalâ^'Carbon Interactions on the Growth of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2010, 114, 6952-6958.	3.1	40
213	Structural Dislocations in Anthracite. Journal of Physical Chemistry Letters, 2011, 2, 2521-2524.	4.6	40
214	Conserved Atomic Bonding Sequences and Strain Organization of Graphene Grain Boundaries. Nano Letters, 2014, 14, 7057-7063.	9.1	40
215	A MoS ₂ -Based Capacitive Displacement Sensor for DNA Sequencing. ACS Nano, 2016, 10, 9009-9016.	14.6	40
216	Calculating carbon nanotube–catalyst adhesion strengths. Physical Review B, 2007, 75, .	3.2	39

#	Article	IF	Citations
217	Direct growth of MoS ₂ single crystals on polyimide substrates. 2D Materials, 2017, 4, 021028.	4.4	39
218	Excitons and Electron–Hole Liquid State in 2D γâ€Phase Groupâ€IV Monochalcogenides. Advanced Functional Materials, 2020, 30, 2000533.	14.9	39
219	Heterobilayer with Ferroelectric Switching of Topological State. Nano Letters, 2021, 21, 785-790.	9.1	38
220	Electronic properties of twisted armchair graphene nanoribbons. Applied Physics Letters, 2011, 99, .	3.3	36
221	Basic structural units in carbon fibers: Atomistic models and tensile behavior. Carbon, 2015, 85, 72-78.	10.3	36
222	Magnetic field controlled graphene oxide-based origami with enhanced surface area and mechanical properties. Nanoscale, 2017, 9, 6991-6997.	5.6	36
223	Chromiteen: A New 2D Oxide Magnetic Material from Natural Ore. Advanced Materials Interfaces, 2018, 5, 1800549.	3.7	36
224	Borophene Concentric Superlattices via Self-Assembly of Twin Boundaries. Nano Letters, 2020, 20, 1315-1321.	9.1	36
225	Bandgap engineering of two-dimensional C3N bilayers. Nature Electronics, 2021, 4, 486-494.	26.0	36
226	Translation Symmetry Breakdown in Low-Dimensional Lattices of Pentagonal Rings. Journal of Physical Chemistry Letters, 2015, 6, 4525-4531.	4.6	35
227	Carbonization with Misfusion: Fundamental Limits of Carbonâ€Fiber Strength Revisited. Advanced Materials, 2016, 28, 10317-10322.	21.0	35
228	Machine learning electron density in sulfur crosslinked carbon nanotubes. Composites Science and Technology, 2018, 166, 3-9.	7.8	35
229	Zwitterionic ultrathin covalent organic polymers for high-performance electrocatalytic carbon dioxide reduction. Applied Catalysis B: Environmental, 2021, 284, 119750.	20.2	35
230	Can carbon nanotube fibers achieve the ultimate conductivity?—Coupled-mode analysis for electron transport through the carbon nanotube contact. Journal of Applied Physics, 2013, 114, 063714.	2.5	34
231	Extensive Energy Landscape Sampling of Nanotube End-Caps Reveals No Chiral-Angle Bias for Their Nucleation. ACS Nano, 2014, 8, 1899-1906.	14.6	34
232	Strain-Robust and Electric Field Tunable Band Alignments in van der Waals WSe ₂ –Graphene Heterojunctions. Journal of Physical Chemistry C, 2016, 120, 22702-22709.	3.1	34
233	First principles calculations of H-storage in sorption materials. Journal of Materials Science, 2012, 47, 7356-7366.	3.7	33
234	B ₄₀ cluster stability, reactivity, and its planar structural precursor. Nanoscale, 2017, 9, 1805-1810.	5.6	33

#	Article	IF	CITATIONS
235	Breathing coherent phonons and caps fragmentation in carbon nanotubes following ultrafast laser pulses. Physical Review B, 2006, 74, .	3.2	32
236	Flexoelectricity and Charge Separation in Carbon Nanotubes. Nano Letters, 2020, 20, 3240-3246.	9.1	32
237	Morphology and rate of fracture in chemical decomposition of solids. Physical Review Letters, 1991, 67, 1590-1593.	7.8	31
238	Hexagonal Graphene Onion Rings. Journal of the American Chemical Society, 2013, 135, 10755-10762.	13.7	31
239	High-throughput screening of metal-porphyrin-like graphenes for selective capture of carbon dioxide. Scientific Reports, 2016, 6, 21788.	3.3	31
240	Honeycomb boron: alchemy on aluminum pan?. Science Bulletin, 2018, 63, 270-271.	9.0	31
241	Heterobilayers of 2D materials as a platform for excitonic superfluidity. Nature Communications, 2020, 11, 2989.	12.8	31
242	Environment-Controlled Dislocation Migration and Superplasticity in Monolayer MoS ₂ . Nano Letters, 2015, 15, 3495-3500.	9.1	30
243	Effects of 3d transition-metal doping on electronic and magnetic properties of MoS2nanoribbons. Physical Chemistry Chemical Physics, 2015, 17, 1831-1836.	2.8	30
244	Engineering of the interactions of volatile organic compounds with MoS ₂ . Journal of Materials Chemistry C, 2017, 5, 1463-1470.	5. 5	30
245	Surfactant-Mediated Growth and Patterning of Atomically Thin Transition Metal Dichalcogenides. ACS Nano, 2020, 14, 6570-6581.	14.6	30
246	Theoretical Prediction of Two-Dimensional Materials, Behavior, and Properties. ACS Nano, 2021, 15, 5959-5976.	14.6	30
247	Salt-Assisted MoS ₂ Growth: Molecular Mechanisms from the First Principles. Journal of the American Chemical Society, 2022, 144, 7497-7503.	13.7	30
248	Formation mechanism of peapod-derived double-walled carbon nanotubes. Physical Review B, 2010, 82, .	3.2	29
249	Thermally Induced 2D Alloyâ€Heterostructure Transformation in Quaternary Alloys. Advanced Materials, 2018, 30, e1804218.	21.0	29
250	Solid–Vapor Reaction Growth of Transitionâ€Metal Dichalcogenide Monolayers. Angewandte Chemie - International Edition, 2016, 55, 10656-10661.	13.8	27
251	Phase Segregation Behavior of Two-Dimensional Transition Metal Dichalcogenide Binary Alloys Induced by Dissimilar Substitution. Chemistry of Materials, 2017, 29, 7431-7439.	6.7	27
252	Tilt Grain Boundary Topology Induced by Substrate Topography. ACS Nano, 2017, 11, 8612-8618.	14.6	27

#	Article	IF	Citations
253	Radiation-Induced Nucleation of Diamond from Amorphous Carbon: Effect of Hydrogen. Journal of Physical Chemistry Letters, 2014, 5, 1924-1928.	4.6	26
254	Nanoâ€Thermodynamics of Chemically Induced Grapheneâ€"Diamond Transformation. Small, 2020, 16, e2004782.	10.0	26
255	Universal Strength Scaling in Carbon Nanotube Bundles with Frictional Load Transfer. ACS Nano, 2021, 15, 1342-1350.	14.6	26
256	Cutaneous neosporosis in a dog in Israel. Veterinary Parasitology, 1998, 79, 257-261.	1.8	25
257	Continuum field model of defect formation in carbon nanotubes. Journal of Applied Physics, 2005, 97, 074303.	2.5	25
258	Electronic and Magnetic Properties of Graphene/Fluorographene Superlattices. Journal of Physical Chemistry C, 2012, 116, 18278-18283.	3.1	25
259	Janus Segregation at the Carbon Nanotube–Catalyst Interface. ACS Nano, 2019, 13, 8836-8841.	14.6	25
260	Thermal/optical effects in NSOM probes. Ultramicroscopy, 1995, 61, 179-185.	1.9	24
261	Edge reconstruction-mediated graphene fracture. Nanoscale, 2015, 7, 2716-2722.	5.6	24
262	Design of Two-Dimensional Graphene-like Dirac Materials \hat{l}^2 (sub>12-XBeB(sub>5 (X = H, F,) Tj ETC 4594-4599.	0q0 0 0 rg 4.6	BT /Overlock 23
263	Transient Kinetic Selectivity in Nanotubes Growth on Solid Co–W Catalyst. Nano Letters, 2018, 18, 5288-5293.	9.1	23
264	Selfâ€Templated Growth of Carbonâ€Nanotube Walls at High Temperatures. Small, 2007, 3, 1735-1739.	10.0	22
265	Nested hybrid nanotubes. Science, 2020, 367, 506-507.	12.6	22
266	What Dictates Rashba Splitting in 2D van der Waals Heterobilayers. Journal of the American Chemical Society, 2021, 143, 3503-3508.	13.7	21
267	Unusual Negative Formation Enthalpies and Atomic Ordering in Isovalent Alloys of Transition Metal Dichalcogenide Monolayers. Chemistry of Materials, 2018, 30, 1547-1555.	6.7	20
268	Hexagonal layered group IV–VI semiconductors and derivatives: fresh blood of the 2D family. Nanoscale, 2020, 12, 13450-13459.	5.6	20
269	Nanoscale Probing of Image-Potential States and Electron Transfer Doping in Borophene Polymorphs. Nano Letters, 2021, 21, 1169-1174.	9.1	20
270	Atomic Layers of Graphene for Microbial Corrosion Prevention. ACS Nano, 2021, 15, 447-454.	14.6	20

#	Article	IF	Citations
271	Twoâ€Dimensional Nanomaterials for the Development of Efficient Gas Sensors: Recent Advances, Challenges, and Future Perspectives. Advanced Materials Technologies, 2022, 7, 2101252.	5.8	20
272	Atomic Molybdenum for Synthesis of Ammonia with 50% Faradic Efficiency. Small, 2022, 18, e2106327.	10.0	20
273	Designing carbon nanoframeworks tailored for hydrogen storage. Chemical Physics Letters, 2007, 439, 354-359.	2.6	19
274	Friction and adhesion properties of vertically aligned multi-walled carbon nanotube arrays and fluoro-nanodiamond films. Carbon, 2008, 46, 1294-1301.	10.3	19
275	Polarization, energetics, and electrorheology in carbon nanotube suspensions under an applied electric field: An exact numerical approach. Physical Review B, 2008, 77, .	3.2	19
276	Phosphorene-based nanogenerator powered by cyclic molecular doping. Nano Energy, 2016, 23, 34-39.	16.0	19
277	Realizing Indirect-to-Direct Band Gap Transition in Few-Layer Two-Dimensional MX ₂ (M =) Tj ETQq1	1 0.7843 5.1	14 rgBT /Ove
278	Step-Edge Epitaxy for Borophene Growth on Insulators. ACS Nano, 2021, 15, 18347-18353.	14.6	19
279	Nickel particle–enabled width-controlled growth of bilayer molybdenum disulfide nanoribbons. Science Advances, 2021, 7, eabk1892.	10.3	19
280	Stressâ€promoted interface diffusion as a precursor of fracture. Journal of Chemical Physics, 1993, 99, 6923-6934.	3.0	18
281	Tip optics for illumination NSOM: extended-zone approach. Ultramicroscopy, 1995, 57, 204-207.	1.9	18
282	Electron transport of nanotube-based gas sensors: Anab initiostudy. Applied Physics Letters, 2008, 92, 022103.	3.3	18
283	Indentation Tests Reveal Geometry-Regulated Stiffening of Nanotube Junctions. Nano Letters, 2016, 16, 232-236.	9.1	18
284	Gateâ€Voltage Control of Borophene Structure Formation. Angewandte Chemie, 2017, 129, 15623-15628.	2.0	18
285	Computational Modeling of 2D Materials under High Pressure and Their Chemical Bonding: Silicene as Possible Field-Effect Transistor. ACS Nano, 2021, 15, 6861-6871.	14.6	18
286	In situ observations of fullerene fusion and ejection in carbon nanotubes. Nanoscale, 2010, 2, 2077.	5.6	17
287	Solid–Vapor Reaction Growth of Transitionâ€Metal Dichalcogenide Monolayers. Angewandte Chemie, 2016, 128, 10814-10819.	2.0	17
288	Nanochimneys: Topology and Thermal Conductance of 3D Nanotube–Graphene Cone Junctions. Journal of Physical Chemistry C, 2017, 121, 1257-1262.	3.1	17

#	Article	IF	Citations
289	Graphene as an electrochemical transfer layer. Carbon, 2019, 141, 266-273.	10.3	17
290	Further Evidence of Inadequate Quality in Lateral Flow Devices Commercially Offered for the Diagnosis of Rabies. Tropical Medicine and Infectious Disease, 2020, 5, 13.	2.3	17
291	Tuning Metal Elements in Open Frameworks for Efficient Oxygen Evolution and Oxygen Reduction Reaction Catalysts. ACS Applied Materials & Samp; Interfaces, 2021, 13, 42715-42723.	8.0	17
292	Implementation and monitoring of oral rabies vaccination of foxes in Kosovo between 2010 and 2013â€"An international and intersectorial effort. International Journal of Medical Microbiology, 2014, 304, 902-910.	3.6	16
293	Variable electronic properties of lateral phosphorene–graphene heterostructures. Physical Chemistry Chemical Physics, 2015, 17, 31685-31692.	2.8	16
294	Optical imaging of carrier dynamics in silicon with subwavelength resolution. Applied Physics Letters, 1997, 70, 1656-1658.	3.3	15
295	Templated growth of graphenic materials. Nanotechnology, 2009, 20, 245607.	2.6	15
296	Energy-Driven Kinetic Monte Carlo Method and Its Application in Fullerene Coalescence. Journal of Physical Chemistry Letters, 2014, 5, 2922-2926.	4.6	15
297	Interface-induced warping in hybrid two-dimensional materials. Nano Research, 2015, 8, 2015-2023.	10.4	15
298	Highly Tunable Electronic Structures of Phosphorene/Carbon Nanotube Heterostructures through External Electric Field and Atomic Intercalation. Nano Letters, 2017, 17, 7995-8004.	9.1	15
299	Scaleâ€Enhanced Magnetism in Exfoliated Atomically Thin Magnetite Sheets. Small, 2020, 16, e2004208.	10.0	15
300	Semiconducting α′-boron sheet with high mobility and low all-boron contact resistance: a first-principles study. Nanoscale, 2021, 13, 8474-8480.	5.6	15
301	Glass composites reinforced with silicon-doped carbon nanotubes. Carbon, 2018, 128, 231-236.	10.3	15
302	Arnold-Chiari Malformation in a Captive African Lion Cub. Journal of Wildlife Diseases, 1998, 34, 661-666.	0.8	14
303	Cattle rabies vaccination—A longitudinal study of rabies antibody titres in an Israeli dairy herd. Preventive Veterinary Medicine, 2015, 121, 170-175.	1.9	14
304	Growth of Molybdenum Carbide–Graphene Hybrids from Molybdenum Disulfide Atomic Layer Template. Advanced Materials Interfaces, 2017, 4, 1600866.	3.7	14
305	Dimensionality-Inhibited Chemical Doping in Two-Dimensional Semiconductors: The Phosphorene and MoS ₂ from Charge-Correction Method. Nano Letters, 2021, 21, 6711-6717.	9.1	14
306	Ground states of group-IV nanostructures: Magic structures of diamond and silicon nanocrystals. Physical Review B, 2011, 83, .	3.2	13

#	Article	IF	CITATIONS
307	Kinetic theory for the formation of diamond nanothreads with desired configurations: a strain–temperature controlled phase diagram. Nanoscale, 2018, 10, 9664-9672.	5.6	13
308	Nonlinear analysis of a SWCNT over a bundle of nanotubes. International Journal of Solids and Structures, 2004, 41, 6925-6936.	2.7	12
309	Energy decomposition analysis of metal silicide nanowires from first principles. Physical Review B, 2007, 75, .	3.2	12
310	Site-percolation threshold of carbon nanotube fibersâ€"Fast inspection of percolation with Markov stochastic theory. Physica A: Statistical Mechanics and Its Applications, 2014, 407, 341-349.	2.6	12
311	An Atomistic Tomographic Study of Oxygen and Hydrogen Atoms and their Molecules in CVD Grown Graphene. Small, 2015, 11, 5968-5974.	10.0	12
312	Borophane Polymorphs. Journal of Physical Chemistry Letters, 2022, 13, 1107-1113.	4.6	12
313	Suprasellar Differentiated Germ Cell Tumor in a Male Dog. Journal of Veterinary Diagnostic Investigation, 1993, 5, 462-467.	1.1	11
314	Grain boundaries in hybrid two-dimensional materials. Journal of the Mechanics and Physics of Solids, 2014, 70, 62-70.	4.8	11
315	Ultrasharp h-BN Nanocones and the Origin of Their High Mechanical Stiffness and Large Dipole Moment. Journal of Physical Chemistry Letters, 2018, 9, 5086-5091.	4.6	11
316	Width-dependent phase crossover in transition metal dichalcogenide nanoribbons. Nanotechnology, 2019, 30, 075701.	2.6	11
317	Kinetically Determined Shapes of Grain Boundaries in Graphene. ACS Nano, 2021, 15, 4893-4900.	14.6	11
318	Unusual electronic and magnetic properties of lateral phosphorene–WSe2 heterostructures. Journal of Materials Chemistry C, 2016, 4, 6657-6665.	5.5	10
319	Complementary behaviour of EDL and HER activity in functionalized graphene nanoplatelets. Nanoscale, 2020, 12, 1790-1800.	5.6	10
320	Dimensionality-Reduced Fermi Level Pinning in Coplanar 2D Heterojunctions. Journal of Physical Chemistry Letters, 2021, 12, 4299-4305.	4.6	10
321	Armchair or Zigzag? A tool for characterizing graphene edge. Computer Physics Communications, 2011, 182, 804-807.	7.5	9
322	Tunable Gigahertz Oscillators of Gliding Incommensurate Bilayer Graphene Sheets. Journal of Applied Mechanics, Transactions ASME, 2013, 80, .	2.2	9
323	Buckling Patterns of Graphene–Boron Nitride Alloy on Ru(0001). Advanced Materials Interfaces, 2015, 2, 1500322.	3.7	9
324	Ionic Graphitization of Ultrathin Films of Ionic Compounds. Journal of Physical Chemistry Letters, 2016, 7, 2659-2663.	4.6	9

#	Article	IF	Citations
325	Structure and Dynamics of the Electronic Heterointerfaces in MoS ₂ by First-Principles Simulations. Journal of Physical Chemistry Letters, 2020, 11, 1644-1649.	4.6	9
326	Piezo-response in two-dimensional α-Tellurene films. Materials Today, 2021, 44, 40-47.	14.2	9
327	Gas-Phase "Prehistory―and Molecular Precursors in Monolayer Metal Dichalcogenides Synthesis: The Case of MoS ₂ . ACS Nano, 2021, 15, 10525-10531.	14.6	9
328	Designing 1D correlated-electron states by non-Euclidean topography of 2D monolayers. Nature Communications, 2022, 13 , .	12.8	9
329	Cariine Medullary Thyroid Carcinoma with Unusual Distant Metastases. Journal of Veterinary Diagnostic Investigation, 1993, 5, 284-288.	1.1	8
330	Kinetics, morphology and pulling regimes for sensing tips in near-field microscopy. Ultramicroscopy, 1995, 57, 241-245.	1.9	8
331	Magnesium Boride Nanotubes: Relative Stability and Atomic and Electronic Structure. Journal of Physical Chemistry C, 2010, 114, 4852-4856.	3.1	8
332	Tailoring the Electronic and Magnetic Properties of Two-Dimensional Silicon Carbide Sheets and Ribbons by Fluorination. Journal of Physical Chemistry C, 2016, 120, 15407-15414.	3.1	8
333	Phase crossover in transition metal dichalcogenide nanoclusters. Nanoscale, 2016, 8, 19154-19160.	5.6	8
334	Correlation between types of defects/vacancies of Bi2S3 nanostructures and their transient photocurrent. Nano Research, 2017, 10, 2405-2414.	10.4	8
335	Characterization of tin(II) sulfide defects/vacancies and correlation with their photocurrent. Nano Research, 2017, 10, 218-228.	10.4	8
336	Franck Condon shift assessment in 2D MoS ₂ . Journal of Physics Condensed Matter, 2018, 30, 095501.	1.8	8
337	Iron corrosion in the "inert―supercritical CO2, ab initio dynamics insights: How impurities matter. Matter, 2022, 5, 751-762.	10.0	8
338	Electron Optics and Valley Hall Effect of Undulated Graphene. Nano Letters, 2022, 22, 2934-2940.	9.1	8
339	Interaction of Low-Energy Ions and Atoms of Light Elements with a Fluorinated Carbon Molecular Lattice. Journal of Physical Chemistry A, 2007, 111, 1508-1514.	2.5	7
340	XTRANS: An electron transport package for current distribution and magnetic field in helical nanostructures. Computational Materials Science, 2014, 83, 426-433.	3.0	7
341	Enhancing Mechanical Properties of Nanocomposites Using Interconnected Carbon Nanotubes (<i>i</i> i) as Reinforcement. Advanced Engineering Materials, 2017, 19, 1600499.	3.5	7
342	Mechanisms and theoretical simulations of the catalytic growth of nanocarbons. MRS Bulletin, 2017, 42, 794-801.	3.5	7

#	Article	IF	Citations
343	Zeolite Nanosheets Stabilize Catalyst Particles to Promote the Growth of Thermodynamically Unfavorable, Smallâ€Diameter Carbon Nanotubes. Small, 2020, 16, e2002120.	10.0	7
344	Probing borophene oxidation at the atomic scale. Nanotechnology, 2022, 33, 235702.	2.6	7
345	Fatigue in assemblies of indefatigable carbon nanotubes. Science Advances, 2021, 7, eabj6996.	10.3	7
346	Interstitial Cell (Leydig) Tumor in an Eland (Taurotragus oryx). Journal of Wildlife Diseases, 1994, 30, 291-294.	0.8	6
347	Detecting the Biopolymer Behavior of Graphene Nanoribbons in Aqueous Solution. Scientific Reports, 2016, 6, 31174.	3.3	6
348	Controllable and Predictable Viscoelastic Behavior of 3D Boronâ€Doped Multiwalled Carbon Nanotube Sponges. Particle and Particle Systems Characterization, 2016, 33, 21-26.	2.3	6
349	Effect of Capâ€"Catalyst Structural Correlation on the Nucleation of Carbon Nanotubes. Journal of Physical Chemistry C, 2017, 121, 18789-18794.	3.1	6
350	Modulating Blue Phosphorene by Synergetic Codoping: Indirect to Direct Gap Transition and Strong Bandgap Bowing. Advanced Functional Materials, 2019, 29, 1808721.	14.9	6
351	Stability and electronic properties of gallenene. Nanoscale Advances, 2022, 4, 1408-1413.	4.6	6
352	Effect of carbon network defects on the electronic structure of semiconductor single-wall carbon nanotubes. Physics of the Solid State, 2004, 46, 1168-1172.	0.6	5
353	Mesoscale reverse stick-slip nanofriction behavior of vertically aligned multiwalled carbon nanotube superlattices. Applied Physics Letters, 2008, 92, 203115.	3.3	5
354	Electromechanical coupling effect on electronic properties of double-walled boron nitride nanotubes. Acta Mechanica Sinica/Lixue Xuebao, 2012, 28, 1532-1538.	3.4	5
355	A jellium model of a catalyst particle in carbon nanotube growth. Journal of Chemical Physics, 2017, 146, 244701.	3.0	5
356	Electronic and Magnetic Diversity of Graphone/Graphene Superlattices. Chemistry of Materials, 2021, 33, 2090-2098.	6.7	5
357	Mechanics of Materials Creation: Nanotubes, Graphene, Carbyne, Borophenes. Procedia IUTAM, 2017, 21, 17-24.	1.2	4
358	Dirac states from <i>p_{x,y} </i> orbitals in the buckled honeycomb structures: A tight-binding model and first-principles combined study. Chinese Physics B, 2018, 27, 087101.	1.4	4
359	Electronic Doping Controlled Migration of Dislocations in Polycrystalline 2D WS ₂ . Small, 2019, 15, e1805145.	10.0	4
360	Short Term Safety, Immunogenicity, and Reproductive Effects of Combined Vaccination With Anti-GnRH (Gonacon) and Rabies Vaccines in Female Feral Cats. Frontiers in Veterinary Science, 2021, 8, 650291.	2.2	4

#	Article	IF	CITATIONS
361	Stress-dominated growth of two-dimensional materials on nonplanar substrates. Journal of the Mechanics and Physics of Solids, 2021, 157, 104645.	4.8	4
362	Fast liquid-phase bimolecular reactions of aromatic free radicals. Reviews of Chemical Intermediates, 1986, 7, 271-300.	1.1	3
363	Comment on "Mechanism for Superelongation of Carbon Nanotubes at High Temperatures― Physical Review Letters, 2009, 103, 039601; author reply 039602.	7.8	3
364	Atomic-scale Observation of Grains and Grain Boundaries in Monolayers of WS ₂ . Microscopy and Microanalysis, 2014, 20, 1084-1085.	0.4	3
365	Graphene: Unraveling the Sinuous Grain Boundaries in Graphene (Adv. Funct. Mater. 3/2015). Advanced Functional Materials, 2015, 25, 496-496.	14.9	3
366	Structureâ€Dependent Electrical and Magnetic Properties of Iron Oxide Composites. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1801004.	1.8	3
367	Energetics of graphene origami and their "spatial resolution― MRS Bulletin, 2021, 46, 481-486.	3.5	3
368	Substitution of copper atoms into defect-rich molybdenum sulfides and their electrocatalytic activity. Nanoscale Advances, 2021, 3, 1747-1757.	4.6	3
369	In-situ Observation of Graphene Sublimation and Edge Reconstructions. Microscopy and Microanalysis, 2009, 15, 1164-1165.	0.4	2
370	Innenrücktitelbild: Two-Dimensional Boron Monolayers Mediated by Metal Substrates (Angew. Chem.) Tj ETQc	10 <u>9.8</u> rgB ⁻	Γ/Qverlock 1
371	Defects in Two-Dimensional Materials. , 2017, , 359-378.		2
372	Correction: Two-dimensional boron: structures, properties and applications. Chemical Society Reviews, 2017, 46, 7470-7470.	38.1	2
373	Quaternary Alloys: Thermally Induced 2D Alloyâ€Heterostructure Transformation in Quaternary Alloys (Adv. Mater. 45/2018). Advanced Materials, 2018, 30, 1870344.	21.0	2
374	Graphene–Diamond Transformation: Nanoâ€Thermodynamics of Chemically Induced Graphene–Diamond Transformation (Small 47/2020). Small, 2020, 16, 2070256.	10.0	2
375	Dual Role of Adsorbent and Non-monotonic Transfer p-Doping of Diamond. ACS Applied Materials & Lamp; Interfaces, 2021, 13, 4676-4681.	8.0	2
376	Stable Low-Dimensional Boron Chalcogenides from Planar Structural Motifs. Journal of Physical Chemistry A, 2021, 125, 6059-6063.	2.5	2
377	Nanomechanics. The Electrical Engineering Handbook, 2002, , .	0.2	2
378	<title>Thermal/temporal response of the NSOM probe/sample system</title> ., 1995,,.		1

#	Article	IF	Citations
379	Bridges between multiple scales. Nano Today, 2006, 1, 41.	11.9	1
380	QUASI-ONE-DIMENSIONAL SILICON NANOSTRUCTURES., 2008,, 289-313.		1
381	2D Materials: Quaternary 2D Transition Metal Dichalcogenides (TMDs) with Tunable Bandgap (Adv.) Tj ETQq1 1 ().784314 21.0	rgBT /Overlo
382	Dimensionality effects in crystal plasticity, from 3D silicon to 2D silicene. Extreme Mechanics Letters, 2020, 40, 100892.	4.1	1
383	Genotyping and phylogenetic analysis of bovine viral diarrhea virus (BVDV) isolates in Kosovo. Veterinaria Italiana, 2014, 50, 69-72.	0.5	1
384	Borophenes: Insights and Predictions From Computational Analyses. , 2021, , 27-49.		1
385	<title>Stress-promoted surface kinetics as a precursor of islanding</title> ., 1994, 2140, 46.		O
386	<title>Energy dissipation in NSOM probe fiber tapers: ray-tracing assessment</title> ., 1996, 2677, 148.		0
387	Near-field optical microscopy: application to investigation of surface laser-induced damage of transparent optical materials., 1998, 3244, 668.		O
388	Mechanisms of inelastic scattering of low-energy protons by C6H6, C60, C6F12, and C60F48 molecules. Physics of the Solid State, 2006, 48, 177-184.	0.6	0
389	Theory of screw dislocation and chiral angle controlled carbon nanotube growth. , 2010, , .		0
390	High electric field enhancement near electron-doped semiconductor nanoribbons. Chemical Physics Letters, 2012, 546, 99-105.	2.6	0
391	Carbon Fibers: Carbonization with Misfusion: Fundamental Limits of Carbon-Fiber Strength Revisited (Adv. Mater. 46/2016). Advanced Materials, 2016, 28, 10342-10342.	21.0	0
392	Seasonal variation in bait uptake and seropositivity during a multi-year biannual oral rabies fox vaccination programme in Kosovo (2010–2015). Preventive Veterinary Medicine, 2020, 181, 105050.	1.9	0
393	Nanomechanics: Physics between Engineering and Chemistry. ICASE/LaRC Interdisciplinary Series in Science and Engineering, 2003, , 3-33.	0.1	0
394	Carbon Nanotubes: Supramolecular Mechanics. , 2014, , 730-743.		0
395	DESIGN AND RELATIVE STABILITY OF MULTICOMPONENT NANOWIRES. , 2006, , 243-244.		0
396	Polycrystalline morphology and mechanical strength of nanotube fibers. Npj Computational Materials, 2022, 8, .	8.7	0