Boris I Yakobson

List of Publications by Citations

Source: https://exaly.com/author-pdf/1614243/boris-i-yakobson-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

387 40,307 101 194 h-index g-index citations papers 10.8 45,629 415 7.74 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
387	Nanomechanics of carbon tubes: Instabilities beyond linear response. <i>Physical Review Letters</i> , 1996 , 76, 2511-2514	7.4	2251
386	Large scale growth and characterization of atomic hexagonal boron nitride layers. <i>Nano Letters</i> , 2010 , 10, 3209-15	11.5	1961
385	Vertical and in-plane heterostructures from WS2/MoS2 monolayers. <i>Nature Materials</i> , 2014 , 13, 1135-4	12 27	1580
384	Intrinsic structural defects in monolayer molybdenum disulfide. <i>Nano Letters</i> , 2013 , 13, 2615-22	11.5	1418
383	Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. <i>Nature Materials</i> , 2013 , 12, 754-9	27	1384
382	Laser-induced porous graphene films from commercial polymers. <i>Nature Communications</i> , 2014 , 5, 571	4 17.4	1020
381	The role of surface oxygen in the growth of large single-crystal graphene on copper. <i>Science</i> , 2013 , 342, 720-3	33.3	868
380	C2F, BN, and C nanoshell elasticity from ab initio computations. <i>Physical Review B</i> , 2001 , 64,	3.3	829
379	A library of atomically thin metal chalcogenides. <i>Nature</i> , 2018 , 556, 355-359	50.4	812
378	Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2. <i>Physical Review B</i> , 2013 , 87,	3.3	662
377	A review on mechanics and mechanical properties of 2D materials araphene and beyond. <i>Extreme Mechanics Letters</i> , 2017 , 13, 42-77	3.9	581
376	Achieving Highly Efficient, Selective, and Stable CO2 Reduction on Nitrogen-Doped Carbon Nanotubes. <i>ACS Nano</i> , 2015 , 9, 5364-71	16.7	451
375	Polymorphism of two-dimensional boron. <i>Nano Letters</i> , 2012 , 12, 2441-5	11.5	435
374	Brittle and Ductile Behavior in Carbon Nanotubes. <i>Physical Review Letters</i> , 1998 , 81, 4656-4659	7.4	431
373	Controlled nanocutting of graphene. <i>Nano Research</i> , 2008 , 1, 116-122	10	424
372	High strain rate fracture and C-chain unraveling in carbon nanotubes. <i>Computational Materials Science</i> , 1997 , 8, 341-348	3.2	417
371	Mechanism of strain release in carbon nanotubes. <i>Physical Review B</i> , 1998 , 57, R4277-R4280	3.3	403

(2011-2007)

370	B80 fullerene: an Ab initio prediction of geometry, stability, and electronic structure. <i>Physical Review Letters</i> , 2007 , 98, 166804	7.4	373	
369	Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nature Communications, 2014, 5, 5246	17.4	352	
368	Incorporation of Nitrogen Defects for Efficient Reduction of CO2 via Two-Electron Pathway on Three-Dimensional Graphene Foam. <i>Nano Letters</i> , 2016 , 16, 466-70	11.5	351	
367	Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. <i>Cancer</i> , 2007 , 110, 2654-65	6.4	334	
366	Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes. <i>Journal of the Mechanics and Physics of Solids</i> , 2008 , 56, 3475-3485	5	333	
365	Controlled Sliding and Pullout of Nested Shells in Individual Multiwalled Carbon Nanotubes. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 8764-8767	3.4	329	
364	Single-Atomic Ruthenium Catalytic Sites on Nitrogen-Doped Graphene for Oxygen Reduction Reaction in Acidic Medium. <i>ACS Nano</i> , 2017 , 11, 6930-6941	16.7	327	
363	Mechanical Properties of Carbon Nanotubes 2001 , 287-327		316	
362	Nitrogen-Doped Carbon Nanotube Arrays for High-Efficiency Electrochemical Reduction of CO2: On the Understanding of Defects, Defect Density, and Selectivity. <i>Angewandte Chemie -</i> <i>International Edition</i> , 2015 , 54, 13701-5	16.4	315	
361	Carbyne from first principles: chain of C atoms, a nanorod or a nanorope. <i>ACS Nano</i> , 2013 , 7, 10075-82	16.7	304	
360	Mechanical relaxation and Intramolecular plasticitylin carbon nanotubes. <i>Applied Physics Letters</i> , 1998 , 72, 918-920	3.4	289	
359	Cones, pringles, and grain boundary landscapes in graphene topology. <i>Nano Letters</i> , 2010 , 10, 2178-83	11.5	287	
358	Can Two-Dimensional Boron Superconduct?. <i>Nano Letters</i> , 2016 , 16, 2522-6	11.5	281	
357	Electrochemical CO2 Reduction with Atomic Iron-Dispersed on Nitrogen-Doped Graphene. <i>Advanced Energy Materials</i> , 2018 , 8, 1703487	21.8	277	
356	Graphene nucleation on transition metal surface: structure transformation and role of the metal step edge. <i>Journal of the American Chemical Society</i> , 2011 , 133, 5009-15	16.4	273	
355	Predicting dislocations and grain boundaries in two-dimensional metal-disulfides from the first principles. <i>Nano Letters</i> , 2013 , 13, 253-8	11.5	270	
354	Dislocation theory of chirality-controlled nanotube growth. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 2506-9	11.5	265	
353	BN white graphene with "colorful" edges: the energies and morphology. <i>Nano Letters</i> , 2011 , 11, 3113-6	11.5	261	

352	High-Performance Hydrogen Evolution from MoS2(1-x) P(x) Solid Solution. <i>Advanced Materials</i> , 2016 , 28, 1427-32	24	260
351	Feasibility of Lithium Storage on Graphene and Its Derivatives. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 1737-42	6.4	253
350	Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution. <i>Nature Energy</i> , 2017 , 2,	62.3	240
349	Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications. <i>ACS Nano</i> , 2018 , 12, 11756-11784	16.7	239
348	Borophene as a prototype for synthetic 2D materials development. <i>Nature Nanotechnology</i> , 2018 , 13, 444-450	28.7	237
347	Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene. <i>Nature Nanotechnology</i> , 2016 , 11, 426-31	28.7	227
346	Electronics and magnetism of patterned graphene nanoroads. <i>Nano Letters</i> , 2009 , 9, 1540-3	11.5	223
345	Two-Dimensional Boron Monolayers Mediated by Metal Substrates. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 13022-6	16.4	221
344	Probing the synthesis of two-dimensional boron by first-principles computations. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 3156-9	16.4	212
343	Fullerene nanocage capacity for hydrogen storage. <i>Nano Letters</i> , 2008 , 8, 767-74	11.5	211
342	Two-dimensional boron: structures, properties and applications. <i>Chemical Society Reviews</i> , 2017 , 46, 674	1 6 86 7 6	3209
341	Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu[(111). <i>Nature</i> , 2020 , 579, 219-223	50.4	209
340	Symmetry-, time-, and temperature-dependent strength of carbon nanotubes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 6105-9	11.5	208
339	Boron- and Nitrogen-Substituted Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction Reaction. <i>Chemistry of Materials</i> , 2015 , 27, 1181-1186	9.6	202
339		9.6 50.4	202
	Reduction Reaction. <i>Chemistry of Materials</i> , 2015 , 27, 1181-1186		
338	Reduction Reaction. <i>Chemistry of Materials</i> , 2015 , 27, 1181-1186 Gram-scale bottom-up flash graphene synthesis. <i>Nature</i> , 2020 , 577, 647-651 Equilibrium at the edge and atomistic mechanisms of graphene growth. <i>Proceedings of the National</i>	50.4	201

(2008-2013)

334	Intrinsic magnetism of grain boundaries in two-dimensional metal dichalcogenides. <i>ACS Nano</i> , 2013 , 7, 10475-81	16.7	186	
333	In situ observation of graphene sublimation and multi-layer edge reconstructions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 10103-8	11.5	186	
332	Curvature-induced polarization in carbon nanoshells. <i>Chemical Physics Letters</i> , 2002 , 360, 182-188	2.5	177	
331	Elasticity, Flexibility, and Ideal Strength of Borophenes. <i>Advanced Functional Materials</i> , 2017 , 27, 16050	5₽ 5.6	176	
330	In situ evidence for chirality-dependent growth rates of individual carbon nanotubes. <i>Nature Materials</i> , 2012 , 11, 213-6	27	174	
329	Ripping graphene: preferred directions. <i>Nano Letters</i> , 2012 , 12, 293-7	11.5	172	
328	Two-dimensional mono-elemental semiconductor with electronically inactive defects: the case of phosphorus. <i>Nano Letters</i> , 2014 , 14, 6782-6	11.5	170	
327	Direct chemical conversion of graphene to boron- and nitrogen- and carbon-containing atomic layers. <i>Nature Communications</i> , 2014 , 5, 3193	17.4	169	
326	Ballistic thermal conductance of graphene ribbons. <i>Nano Letters</i> , 2010 , 10, 1652-6	11.5	169	
325	Dislocation motion and grain boundary migration in two-dimensional tungsten disulphide. <i>Nature Communications</i> , 2014 , 5, 4867	17.4	167	
324	Electro-mechanical anisotropy of phosphorene. <i>Nanoscale</i> , 2015 , 7, 9746-51	7.7	157	
323	Two-dimensional tetragonal TiC monolayer sheet and nanoribbons. <i>Journal of the American Chemical Society</i> , 2012 , 134, 19326-9	16.4	154	
322	Pseudo Hall-Petch strength reduction in polycrystalline graphene. <i>Nano Letters</i> , 2013 , 13, 1829-33	11.5	154	
321	Evolutionary selection growth of two-dimensional materials on polycrystalline substrates. <i>Nature Materials</i> , 2018 , 17, 318-322	27	151	
320	Graphene edge from armchair to zigzag: the origins of nanotube chirality?. <i>Physical Review Letters</i> , 2010 , 105, 235502	7.4	151	
319	Spontaneous twist and intrinsic instabilities of pristine graphene nanoribbons. <i>Nano Research</i> , 2009 , 2, 161-166	10	147	
318	Photoluminescence quenching and charge transfer in artificial heterostacks of monolayer transition metal dichalcogenides and few-layer black phosphorus. <i>ACS Nano</i> , 2015 , 9, 555-63	16.7	145	
317	Hydrogen storage by spillover on graphene as a phase nucleation process. <i>Physical Review B</i> , 2008 , 78,	3.3	143	

316	Predicting Two-Dimensional Silicon Carbide Monolayers. <i>ACS Nano</i> , 2015 , 9, 9802-9	16.7	141
315	The future of the fullerenes. <i>Solid State Communications</i> , 1998 , 107, 597-606	1.6	140
314	Clustering of Sc on SWNT and Reduction of Hydrogen Uptake: Ab-Initio All-Electron Calculations. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 17977-17980	3.8	139
313	Substrate-Induced Nanoscale Undulations of Borophene on Silver. <i>Nano Letters</i> , 2016 , 16, 6622-6627	11.5	136
312	Borophene Synthesis on Au(111). <i>ACS Nano</i> , 2019 , 13, 3816-3822	16.7	134
311	Why nanotubes grow chiral. <i>Nature Communications</i> , 2014 , 5, 4892	17.4	128
310	Quantum Dots and Nanoroads of Graphene Embedded in Hexagonal Boron Nitride. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 9889-9893	3.8	127
309	Probing properties of boron alpha-tubes by Ab Initio calculations. <i>Nano Letters</i> , 2008 , 8, 1314-7	11.5	126
308	Quaternary 2D Transition Metal Dichalcogenides (TMDs) with Tunable Bandgap. <i>Advanced Materials</i> , 2017 , 29, 1702457	24	124
307	Mechanically induced defects and strength of BN nanotubes. <i>Physical Review B</i> , 2002 , 65,	3.3	124
306	Two-dimensional materials: Polyphony in B flat. <i>Nature Chemistry</i> , 2016 , 8, 525-7	17.6	122
305	Consistent methodology for calculating surface and interface energies. <i>Physical Review B</i> , 1998 , 57, 72	81 5. 329	1121
304	Nanomechanical cleavage of molybdenum disulphide atomic layers. <i>Nature Communications</i> , 2014 , 5, 3631	17.4	118
303	Phase diagram of quasi-two-dimensional carbon, from graphene to diamond. <i>Nano Letters</i> , 2014 , 14, 676-81	11.5	115
302	H-Spillover through the Catalyst Saturation: An Ab Initio Thermodynamics Study. ACS Nano, 2009, 3, 16	557 <i>6</i> 6 7	115
301	Atomic H-Induced MoC Hybrid as an Active and Stable Bifunctional Electrocatalyst. <i>ACS Nano</i> , 2017 , 11, 384-394	16.7	114
300	Vacancy clusters in graphane as quantum dots. ACS Nano, 2010 , 4, 3510-4	16.7	114

298	Pseudoclimb and dislocation dynamics in superplastic nanotubes. <i>Physical Review Letters</i> , 2007 , 98, 075	i5 j 0.3j	113
297	Highly Itinerant Atomic Vacancies in Phosphorene. <i>Journal of the American Chemical Society</i> , 2016 , 138, 10199-206	16.4	112
296	Scratching the surface of buckminsterfullerene: the barriers for Stone-Wales transformation through symmetric and asymmetric transition states. <i>Journal of the American Chemical Society</i> , 2003 , 125, 5572-80	16.4	112
295	Two-Dimensional SiS Layers with Promising Electronic and Optoelectronic Properties: Theoretical Prediction. <i>Nano Letters</i> , 2016 , 16, 1110-7	11.5	110
294	Tailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry. <i>Nano Letters</i> , 2014 , 14, 1354-61	11.5	110
293	Patterning nanoroads and quantum dots on fluorinated graphene. <i>Nano Research</i> , 2011 , 4, 143-152	10	109
292	What is the ground-state structure of the thinnest Si nanowires?. <i>Physical Review Letters</i> , 2003 , 91, 035	5 9 .14	106
291	Type-II Multiferroic HfVCF MXene Monolayer with High Transition Temperature. <i>Journal of the American Chemical Society</i> , 2018 , 140, 9768-9773	16.4	105
29 0	Mechanically induced metal-insulator transition in carbyne. <i>Nano Letters</i> , 2014 , 14, 4224-9	11.5	105
289	Electronic transport through bent carbon nanotubes: Nanoelectromechanical sensors and switches. <i>Physical Review B</i> , 2003 , 67,	3.3	103
288	Bond-breaking bifurcation states in carbon nanotube fracture. <i>Journal of Chemical Physics</i> , 2003 , 118, 9485-9488	3.9	101
287	Strain-Induced Electronic Structure Changes in Stacked van der Waals Heterostructures. <i>Nano Letters</i> , 2016 , 16, 3314-20	11.5	101
286	Grain Boundary Structures and Electronic Properties of Hexagonal Boron Nitride on Cu(111). <i>Nano Letters</i> , 2015 , 15, 5804-10	11.5	100
285	An open canvas2D materials with defects, disorder, and functionality. <i>Accounts of Chemical Research</i> , 2015 , 48, 73-80	24.3	99
284	Kinetic theory of symmetry-dependent strength in carbon nanotubes. <i>Physical Review Letters</i> , 2002 , 88, 065501	7·4	98
283	Growth Mechanism and Morphology of Hexagonal Boron Nitride. <i>Nano Letters</i> , 2016 , 16, 1398-403	11.5	97
282	Observational geology of graphene, at the nanoscale. ACS Nano, 2011, 5, 1569-74	16.7	96
281	Engineering electronic properties of layered transition-metal dichalcogenide compounds through alloying. <i>Nanoscale</i> , 2014 , 6, 5820-5	7.7	95

280	Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions. <i>Advanced Materials</i> , 2015 , 27, 7800-8	24	94
279	Thickness-dependent patterning of MoS2 sheets with well-oriented triangular pits by heating in air. <i>Nano Research</i> , 2013 , 6, 703-711	10	92
278	How Nitrogen-Doped Graphene Quantum Dots Catalyze Electroreduction of CO2 to Hydrocarbons and Oxygenates. <i>ACS Catalysis</i> , 2017 , 7, 6245-6250	13.1	91
277	How evaporating carbon nanotubes retain their perfection?. Nano Letters, 2007, 7, 681-4	11.5	91
276	Intermixing and periodic self-assembly of borophene line defects. <i>Nature Materials</i> , 2018 , 17, 783-788	27	90
275	Efficient defect healing in catalytic carbon nanotube growth. <i>Physical Review Letters</i> , 2012 , 108, 245505	7.4	89
274	Atomistic theory of mechanical relaxation in fullerene nanotubes. <i>Carbon</i> , 2000 , 38, 1675-1680	10.4	86
273	Calcium-decorated carbyne networks as hydrogen storage media. <i>Nano Letters</i> , 2011 , 11, 2660-5	11.5	85
272	High Performance Electrocatalytic Reaction of Hydrogen and Oxygen on Ruthenium Nanoclusters. <i>ACS Applied Materials & District Material</i>	9.5	84
271	Self-gating in semiconductor electrocatalysis. <i>Nature Materials</i> , 2019 , 18, 1098-1104	27	84
270	Dynamic topology of fullerene coalescence. <i>Physical Review Letters</i> , 2002 , 88, 185501	7.4	84
269	Two-Dimensional Boron Polymorphs for Visible Range Plasmonics: A First-Principles Exploration. Journal of the American Chemical Society, 2017 , 139, 17181-17185	16.4	83
268	Strong interfacial coupling of MoS2/g-C3N4 van de Waals solids for highly active water reduction. <i>Nano Energy</i> , 2016 , 27, 44-50	17.1	81
267	Endohedral silicon nanotubes as thinnest silicide wires. <i>Physical Review B</i> , 2004 , 70,	3.3	81
266	Nitrogen-Doped Carbon Nanotube Arrays for High-Efficiency Electrochemical Reduction of CO2: On the Understanding of Defects, Defect Density, and Selectivity. <i>Angewandte Chemie</i> , 2015 , 127, 1390	5 ² -1390	og ⁷⁸
265	Interface toughness of carbon nanotube reinforced epoxy composites. <i>ACS Applied Materials & ACS Applied Materials & Interfaces</i> , 2011 , 3, 129-34	9.5	78
264	How Graphene Islands Are Unidirectionally Aligned on the Ge(110) Surface. <i>Nano Letters</i> , 2016 , 16, 316	0 15 1.5	78
263	Oral vaccination of wildlife using a vaccinia-rabies-glycoprotein recombinant virus vaccine (RABORAL V-RG): a global review. <i>Veterinary Research</i> , 2017 , 48, 57	3.8	74

262	Real time microscopy, kinetics, and mechanism of giant fullerene evaporation. <i>Physical Review Letters</i> , 2007 , 99, 175503	7.4	73
261	First-Principles Studies of Li Nucleation on Graphene. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 1225	5694	72
260	Engineering grain boundaries at the 12D limit for the hydrogen evolution reaction. <i>Nature Communications</i> , 2020 , 11, 57	17.4	72
259	Assessing carbon-based anodes for lithium-ion batteries: a universal description of charge-transfer binding. <i>Physical Review Letters</i> , 2014 , 113, 028304	7.4	71
258	Two-Dimensional Boron Monolayers Mediated by Metal Substrates. <i>Angewandte Chemie</i> , 2015 , 127, 132	2 3. 6 -13	2 1 18
257	Many-body and spin-orbit effects on direct-indirect band gap transition of strained monolayer MoS2 and WS2. <i>Annalen Der Physik</i> , 2014 , 526, L7-L12	2.6	70
256	An atomistic and non-classical continuum field theoretic perspective of elastic interactions between defects (force dipoles) of various symmetries and application to graphene. <i>Journal of the Mechanics and Physics of Solids</i> , 2006 , 54, 2304-2329	5	68
255	Riemann Surfaces of Carbon as Graphene Nanosolenoids. <i>Nano Letters</i> , 2016 , 16, 34-9	11.5	67
254	Direct and Indirect Interlayer Excitons in a van der Waals Heterostructure of hBN/WS/MoS/hBN. <i>ACS Nano</i> , 2018 , 12, 2498-2505	16.7	67
253	Carrier Delocalization in Two-Dimensional Coplanar p-n Junctions of Graphene and Metal Dichalcogenides. <i>Nano Letters</i> , 2016 , 16, 5032-6	11.5	67
252	The ultimate diamond slab: GraphAne versus graphEne. <i>Diamond and Related Materials</i> , 2010 , 19, 368-37	73 35	66
251	Origins and effects of thermal processes on near-field optical probes. <i>Applied Physics Letters</i> , 1995 , 67, 2597-2599	3.4	66
250	Influence of Size Effect on the Electronic and Elastic Properties of Diamond Films with Nanometer Thickness. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 132-136	3.8	65
249	Energetics of Stone Wales defects in deformations of monoatomic hexagonal layers. <i>Computational Materials Science</i> , 2002 , 23, 62-72	3.2	64
248	Breaking of symmetry in graphene growth on metal substrates. <i>Physical Review Letters</i> , 2015 , 114, 1155	924	63
247	Two-dimensional boron-nitrogen-carbon monolayers with tunable direct band gaps. <i>Nanoscale</i> , 2015 , 7, 12023-9	7.7	63
246	Oxidized Laser-Induced Graphene for Efficient Oxygen Electrocatalysis. <i>Advanced Materials</i> , 2018 , 30, e1707319	24	63
245	Large hexagonal bi- and trilayer graphene single crystals with varied interlayer rotations. Angewandte Chemie - International Edition, 2014, 53, 1565-9	16.4	63

244	An Anomalous Formation Pathway for Dislocation-Sulfur Vacancy Complexes in Polycrystalline Monolayer MoS2. <i>Nano Letters</i> , 2015 , 15, 6855-61	11.5	62
243	Strain-rate and temperature dependent plastic yield in carbon nanotubes from ab initio calculations. <i>Applied Physics Letters</i> , 2004 , 84, 2775-2777	3.4	62
242	Thermodynamics of yield in boron nitride nanotubes. <i>Physical Review B</i> , 2003 , 68,	3.3	62
241	Predicting stable phase monolayer Mo2C (MXene), a superconductor with chemically-tunable critical temperature. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 3438-3444	7.1	60
240	Flexoelectricity in Carbon Nanostructures: Nanotubes, Fullerenes, and Nanocones. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 2740-4	6.4	59
239	Coalescence of fullerene cages: Topology, energetics, and molecular dynamics simulation. <i>Physical Review B</i> , 2002 , 66,	3.3	59
238	Mechanisms of the oxygen reduction reaction on B- and/or N-doped carbon nanomaterials with curvature and edge effects. <i>Nanoscale</i> , 2018 , 10, 1129-1134	7.7	58
237	Defect-detriment to graphene strength is concealed by local probe: the topological and geometrical effects. <i>ACS Nano</i> , 2015 , 9, 401-8	16.7	57
236	Metal-assisted hydrogen storage on Pt-decorated single-walled carbon nanohorns. <i>Carbon</i> , 2012 , 50, 4953-4964	10.4	57
235	Nanotubes. Current Opinion in Solid State and Materials Science, 1997 , 2, 706-715	12	55
234	The boron buckyball and its precursors: an electronic structure study. <i>Journal of Physical Chemistry A</i> , 2008 , 112, 13679-83	2.8	55
233	How Much N-Doping Can Graphene Sustain?. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 106-12	6.4	54
232	Persistence Length and Nanomechanics of Random Bundles of Nanotubes. <i>Journal of Nanoparticle Research</i> , 2006 , 8, 105-110	2.3	54
231	Layer Engineering of 2D Semiconductor Junctions. <i>Advanced Materials</i> , 2016 , 28, 5126-32	24	53
230	Closed-edged graphene nanoribbons from large-diameter collapsed nanotubes. ACS Nano, 2012, 6, 602	23£827	53
229	Growing a carbon nanotube atom by atom: "and yet it does turn". <i>Nano Letters</i> , 2009 , 9, 2961-6	11.5	53
228	Nanotube nucleation versus carbon-catalyst adhesionprobed by molecular dynamics simulations. Journal of Chemical Physics, 2009 , 131, 224501	3.9	53
227	Self-modulated band gap in boron nitride nanoribbons and hydrogenated sheets. <i>Nanoscale</i> , 2013 , 5, 6381-7	7.7	52

226	Nanotube-derived carbon foam for hydrogen sorption. <i>Journal of Chemical Physics</i> , 2007 , 127, 164703	3.9	52
225	Metallacarboranes: toward promising hydrogen storage metal organic frameworks. <i>Journal of the American Chemical Society</i> , 2010 , 132, 14126-9	16.4	51
224	Selective cap opening in carbon nanotubes driven by laser-induced coherent phonons. <i>Physical Review Letters</i> , 2004 , 92, 117401	7.4	51
223	New insights into the properties and interactions of carbon chains as revealed by HRTEM and DFT analysis. <i>Carbon</i> , 2014 , 66, 436-436	10.4	50
222	Edge-Catalyst Wetting and Orientation Control of Graphene Growth by Chemical Vapor Deposition Growth. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 3093-9	6.4	50
221	Probing the Synthesis of Two-Dimensional Boron by First-Principles Computations. <i>Angewandte Chemie</i> , 2013 , 125, 3238-3241	3.6	50
220	Carbon nanotube nucleation driven by catalyst morphology dynamics. ACS Nano, 2011, 5, 10096-101	16.7	49
219	Manganese deception on graphene and implications in catalysis. <i>Carbon</i> , 2018 , 132, 623-631	10.4	48
218	Low-temperature single-wall carbon nanotubes synthesis: feedstock decomposition limited growth. <i>Journal of the American Chemical Society</i> , 2008 , 130, 11840-1	16.4	48
217	Nanomechanics of carbon honeycomb cellular structures. <i>Carbon</i> , 2017 , 113, 26-32	10.4	47
217	Nanomechanics of carbon honeycomb cellular structures. <i>Carbon</i> , 2017 , 113, 26-32 Geometric imaging of borophene polymorphs with functionalized probes. <i>Nature Communications</i> , 2019 , 10, 1642		47
	Geometric imaging of borophene polymorphs with functionalized probes. <i>Nature Communications</i> ,		
216	Geometric imaging of borophene polymorphs with functionalized probes. <i>Nature Communications</i> , 2019 , 10, 1642	17.4	44
216	Geometric imaging of borophene polymorphs with functionalized probes. <i>Nature Communications</i> , 2019 , 10, 1642 Dirac Cones and Nodal Line in Borophene. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 2757-2762 Hydrogen Storage Capacity of Carbon-Foams: Grand Canonical Monte Carlo Simulations. <i>Journal of</i>	17.4 6.4	44
216 215 214	Geometric imaging of borophene polymorphs with functionalized probes. <i>Nature Communications</i> , 2019 , 10, 1642 Dirac Cones and Nodal Line in Borophene. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 2757-2762 Hydrogen Storage Capacity of Carbon-Foams: Grand Canonical Monte Carlo Simulations. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 2476-2482	17.4 6.4 3.8	44 44 44
216 215 214 213	Geometric imaging of borophene polymorphs with functionalized probes. <i>Nature Communications</i> , 2019 , 10, 1642 Dirac Cones and Nodal Line in Borophene. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 2757-2762 Hydrogen Storage Capacity of Carbon-Foams: Grand Canonical Monte Carlo Simulations. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 2476-2482 Fullerene shape transformations via Stone-Wales bond rotations. <i>Physical Review B</i> , 2003 , 68,	17.4 6.4 3.8 3.3	44 44 44
216 215 214 213 212	Geometric imaging of borophene polymorphs with functionalized probes. <i>Nature Communications</i> , 2019 , 10, 1642 Dirac Cones and Nodal Line in Borophene. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 2757-2762 Hydrogen Storage Capacity of Carbon-Foams: Grand Canonical Monte Carlo Simulations. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 2476-2482 Fullerene shape transformations via Stone-Wales bond rotations. <i>Physical Review B</i> , 2003 , 68, Thermomechanical analysis of two-dimensional boron monolayers. <i>Physical Review B</i> , 2016 , 93, Atomic Ru Immobilized on Porous h-BN through Simple Vacuum Filtration for Highly Active and	17.4 6.4 3.8 3.3	44 44 44 43

208	Challenges in hydrogen adsorptions: from physisorption to chemisorption. <i>Frontiers of Physics</i> , 2011 , 6, 142-150	3.7	42
207	Constructing metallic nanoroads on a MoSImonolayer via hydrogenation. <i>Nanoscale</i> , 2014 , 6, 1691-7	7.7	41
206	Evaluation of colony losses in Israel in relation to the incidence of pathogens and pests. <i>Apidologie</i> , 2011 , 42, 192-199	2.3	41
205	Unraveling the Sinuous Grain Boundaries in Graphene. <i>Advanced Functional Materials</i> , 2015 , 25, 367-373	3 15.6	40
204	Rate theory of yield in boron nitride nanotubes. <i>Physical Review B</i> , 2005 , 72,	3.3	40
203	Topochemistry of Bowtie- and Star-Shaped Metal Dichalcogenide Nanoisland Formation. <i>Nano Letters</i> , 2016 , 16, 3696-702	11.5	40
202	Spiral Growth of SnSe2 Crystals by Chemical Vapor Deposition. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600383	4.6	40
201	Upright standing graphene formation on substrates. <i>Journal of the American Chemical Society</i> , 2011 , 133, 16072-9	16.4	39
200	Calculating carbon nanotubellatalyst adhesion strengths. <i>Physical Review B</i> , 2007 , 75,	3.3	39
199	Kinetic limits for sensing tip morphology in near-field scanning optical microscopes. <i>Journal of Applied Physics</i> , 1993 , 73, 7984-7986	2.5	39
198	Low Contact Barrier in 2H/1T' MoTe In-Plane Heterostructure Synthesized by Chemical Vapor Deposition. <i>ACS Applied Materials & Deposition (Material Science)</i> 11, 12777-12785	9.5	38
197	Growth of large-area aligned pentagonal graphene domains on high-index copper surfaces. <i>Nano Research</i> , 2016 , 9, 2182-2189	10	38
196	Conserved atomic bonding sequences and strain organization of graphene grain boundaries. <i>Nano Letters</i> , 2014 , 14, 7057-63	11.5	36
195	Two-Level Quantum Systems in Two-Dimensional Materials for Single Photon Emission. <i>Nano Letters</i> , 2019 , 19, 408-414	11.5	36
194	A MoS2-Based Capacitive Displacement Sensor for DNA Sequencing. ACS Nano, 2016, 10, 9009-16	16.7	35
193	Exploring the interface between single-walled carbon nanotubes and epoxy resin. <i>Carbon</i> , 2016 , 105, 600-606	10.4	34
192	Gate-Voltage Control of Borophene Structure Formation. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 15421-15426	16.4	34
191	Interplay of Catalyst Size and Metal©arbon Interactions on the Growth of Single-Walled Carbon Nanotubes. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 6952-6958	3.8	34

190	Zinc oxide-black phosphorus composites for ultrasensitive nitrogen dioxide sensing. <i>Nanoscale Horizons</i> , 2018 , 3, 525-531	10.8	34
189	Mechanochemistry of One-Dimensional Boron: Structural and Electronic Transitions. <i>Journal of the American Chemical Society</i> , 2017 , 139, 2111-2117	16.4	33
188	Metallic High-Angle Grain Boundaries in Monolayer Polycrystalline WS2. Small, 2015, 11, 4503-7	11	33
187	Electronic properties of twisted armchair graphene nanoribbons. <i>Applied Physics Letters</i> , 2011 , 99, 01310	9 2 4	33
186	Flash Graphene Morphologies. ACS Nano, 2020, 14, 13691-13699	16.7	33
185	Building a stable cationic molecule/electrode interface for highly efficient and durable CO2 reduction at an industrially relevant current. <i>Energy and Environmental Science</i> , 2021 , 14, 483-492	35.4	33
184	Chemical Trends of Electronic Properties of Two-Dimensional Halide Perovskites and Their Potential Applications for Electronics and Optoelectronics. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 24682-24687	3.8	32
183	Extensive energy landscape sampling of nanotube end-caps reveals no chiral-angle bias for their nucleation. <i>ACS Nano</i> , 2014 , 8, 1899-906	16.7	32
182	Can carbon nanotube fibers achieve the ultimate conductivity? Coupled-mode analysis for electron transport through the carbon nanotube contact. <i>Journal of Applied Physics</i> , 2013 , 114, 063714	2.5	32
181	First principles calculations of H-storage in sorption materials. <i>Journal of Materials Science</i> , 2012 , 47, 7356-7366	4.3	31
180	Hydrogen Peroxide Generation with 100% Faradaic Efficiency on Metal-Free Carbon Black. <i>ACS Catalysis</i> , 2021 , 11, 2454-2459	13.1	31
179	Breathing coherent phonons and caps fragmentation in carbon nanotubes following ultrafast laser pulses. <i>Physical Review B</i> , 2006 , 74,	3.3	30
178	In Pursuit of 2D Materials for Maximum Optical Response. ACS Nano, 2018, 12, 10880-10889	16.7	30
177	Magnetic field controlled graphene oxide-based origami with enhanced surface area and mechanical properties. <i>Nanoscale</i> , 2017 , 9, 6991-6997	7.7	29
176	Strain tolerance of two-dimensional crystal growth on curved surfaces. Science Advances, 2019, 5, eaav4	02 85	29
175	Structural Dislocations in Anthracite. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 2521-2524	6.4	29
174	How the Complementarity at Vicinal Steps Enables Growth of 2D Monocrystals. <i>Nano Letters</i> , 2019 , 19, 2027-2031	11.5	29
173	Earth-Abundant and Non-Toxic SiX (X = S, Se) Monolayers as Highly Efficient Thermoelectric Materials. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 123-128	3.8	28

172	Effects of 3d transition-metal doping on electronic and magnetic properties of MoSIhanoribbons. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 1831-6	3.6	28
171	Hexagonal graphene onion rings. <i>Journal of the American Chemical Society</i> , 2013 , 135, 10755-62	16.4	28
170	Formation mechanism of peapod-derived double-walled carbon nanotubes. <i>Physical Review B</i> , 2010 , 82,	3.3	28
169	Direct growth of MoS 2 single crystals on polyimide substrates. 2D Materials, 2017, 4, 021028	5.9	27
168	Strain-Robust and Electric Field Tunable Band Alignments in van der Waals WSe2©Graphene Heterojunctions. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 22702-22709	3.8	27
167	B cluster stability, reactivity, and its planar structural precursor. <i>Nanoscale</i> , 2017 , 9, 1805-1810	7.7	26
166	Translation symmetry breakdown in low-dimensional lattices of pentagonal rings. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 4525-31	6.4	26
165	Basic structural units in carbon fibers: Atomistic models and tensile behavior. <i>Carbon</i> , 2015 , 85, 72-78	10.4	26
164	Morphology and rate of fracture in chemical decomposition of solids. <i>Physical Review Letters</i> , 1991 , 67, 1590-1593	7.4	26
163	Near-equilibrium growth from borophene edges on silver. <i>Science Advances</i> , 2019 , 5, eaax0246	14.3	25
162	Continuum field model of defect formation in carbon nanotubes. <i>Journal of Applied Physics</i> , 2005 , 97, 074303	2.5	25
161	Borophene synthesis beyond the single-atomic-layer limit. <i>Nature Materials</i> , 2021 ,	27	25
160	Environment-Controlled Dislocation Migration and Superplasticity in Monolayer MoS2. <i>Nano Letters</i> , 2015 , 15, 3495-500	11.5	24
159	Large Hexagonal Bi- and Trilayer Graphene Single Crystals with Varied Interlayer Rotations. <i>Angewandte Chemie</i> , 2014 , 126, 1591-1595	3.6	24
158	Electronic and Magnetic Properties of Graphene/Fluorographene Superlattices. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 18278-18283	3.8	24
157	Heterobilayers of 2D materials as a platform for excitonic superfluidity. <i>Nature Communications</i> , 2020 , 11, 2989	17.4	23
156	Two-Dimensional Diamond-Diamane: Current State and Further Prospects. <i>Nano Letters</i> , 2021 , 21, 5475	- 54.8 4	23
155	Carbonization with Misfusion: Fundamental Limits of Carbon-Fiber Strength Revisited. <i>Advanced Materials</i> , 2016 , 28, 10317-10322	24	22

154	Phase Segregation Behavior of Two-Dimensional Transition Metal Dichalcogenide Binary Alloys Induced by Dissimilar Substitution. <i>Chemistry of Materials</i> , 2017 , 29, 7431-7439	9.6	22
153	Thermal/optical effects in NSOM probes. <i>Ultramicroscopy</i> , 1995 , 61, 179-185	3.1	22
152	Edge reconstruction-mediated graphene fracture. <i>Nanoscale</i> , 2015 , 7, 2716-22	7.7	21
151	Honeycomb boron: alchemy on aluminum pan?. Science Bulletin, 2018 , 63, 270-271	10.6	21
150	Tilt Grain Boundary Topology Induced by Substrate Topography. ACS Nano, 2017, 11, 8612-8618	16.7	21
149	Cutaneous neosporosis in a dog in Israel. <i>Veterinary Parasitology</i> , 1998 , 79, 257-61	2.8	21
148	Hexagonal Boron Nitride for Sulfur Corrosion Inhibition. ACS Nano, 2020, 14, 14809-14819	16.7	21
147	Flexoelectricity and Charge Separation in Carbon Nanotubes. <i>Nano Letters</i> , 2020 , 20, 3240-3246	11.5	20
146	Borophene Concentric Superlattices via Self-Assembly of Twin Boundaries. <i>Nano Letters</i> , 2020 , 20, 131	5- <u>1</u> -133 ₃ 1	20
145	Machine learning electron density in sulfur crosslinked carbon nanotubes. <i>Composites Science and Technology</i> , 2018 , 166, 3-9	8.6	20
144	Solid-Vapor Reaction Growth of Transition-Metal Dichalcogenide Monolayers. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 10656-61	16.4	20
143	Millisecond Conversion of Metastable 2D Materials by Flash Joule Heating. ACS Nano, 2021 , 15, 1282-1	296 .7	20
142	Engineering of the interactions of volatile organic compounds with MoS2. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 1463-1470	7.1	19
141	Room-Temperature Ferroelectricity in Group-IV Metal Chalcogenide Nanowires. <i>Journal of the American Chemical Society</i> , 2019 , 141, 15040-15045	16.4	19
140	Polarization, energetics, and electrorheology in carbon nanotube suspensions under an applied electric field: An exact numerical approach. <i>Physical Review B</i> , 2008 , 77,	3.3	19
139	Thermally Induced 2D Alloy-Heterostructure Transformation in Quaternary Alloys. <i>Advanced Materials</i> , 2018 , 30, e1804218	24	19
138	Chromiteen: A New 2D Oxide Magnetic Material from Natural Ore. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1800549	4.6	18
137	Design of Two-Dimensional Graphene-like Dirac Materials EXBeB (X = H, F, Cl) from Non-graphene-like EBorophene. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 4594-4599	6.4	18

136	Electron transport of nanotube-based gas sensors: An ab initio study. <i>Applied Physics Letters</i> , 2008 , 92, 022103	3.4	18
135	Self-templated growth of carbon-nanotube walls at high temperatures. <i>Small</i> , 2007 , 3, 1735-9	11	18
134	Radiation-Induced Nucleation of Diamond from Amorphous Carbon: Effect of Hydrogen. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 1924-8	6.4	17
133	Designing carbon nanoframeworks tailored for hydrogen storage. <i>Chemical Physics Letters</i> , 2007 , 439, 354-359	2.5	17
132	CO to Formic Acid Using Cu-Sn on Laser-Induced Graphene. <i>ACS Applied Materials & Company Comp</i>	9.5	17
131	Surfactant-Mediated Growth and Patterning of Atomically Thin Transition Metal Dichalcogenides. <i>ACS Nano</i> , 2020 , 14, 6570-6581	16.7	16
130	Transient Kinetic Selectivity in Nanotubes Growth on Solid Co-W Catalyst. <i>Nano Letters</i> , 2018 , 18, 5288-	5 203	16
129	Nested hybrid nanotubes. <i>Science</i> , 2020 , 367, 506-507	33.3	15
128	Janus Segregation at the Carbon Nanotube-Catalyst Interface. ACS Nano, 2019, 13, 8836-8841	16.7	15
127	Tip optics for illumination NSOM: extended-zone approach. <i>Ultramicroscopy</i> , 1995 , 57, 204-207	3.1	15
126	Stress-promoted interface diffusion as a precursor of fracture. <i>Journal of Chemical Physics</i> , 1993 , 99, 6923-6934	3.9	15
125	Universal Strength Scaling in Carbon Nanotube Bundles with Frictional Load Transfer. <i>ACS Nano</i> , 2021 , 15, 1342-1350	16.7	15
124	Variable electronic properties of lateral phosphorene-graphene heterostructures. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 31685-92	3.6	14
123	Gate-Voltage Control of Borophene Structure Formation. <i>Angewandte Chemie</i> , 2017 , 129, 15623-15628	3.6	14
122	Templated growth of graphenic materials. <i>Nanotechnology</i> , 2009 , 20, 245607	3.4	14
121	Nano-Thermodynamics of Chemically Induced Graphene-Diamond Transformation. <i>Small</i> , 2020 , 16, e20	0 47 82	14
120	Growth of Molybdenum Carbide Ciraphene Hybrids from Molybdenum Disulfide Atomic Layer Template. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1600866	4.6	13
119	Excitons and ElectronHole Liquid State in 2D Phase Group-IV Monochalcogenides. <i>Advanced Functional Materials</i> , 2020 , 30, 2000533	15.6	13

(2015-2016)

118	High-throughput screening of metal-porphyrin-like graphenes for selective capture of carbon dioxide. <i>Scientific Reports</i> , 2016 , 6, 21788	4.9	13
117	Phosphorene-based nanogenerator powered by cyclic molecular doping. <i>Nano Energy</i> , 2016 , 23, 34-39	17.1	13
116	Implementation and monitoring of oral rabies vaccination of foxes in Kosovo between 2010 and 2013an international and intersectorial effort. <i>International Journal of Medical Microbiology</i> , 2014 , 304, 902-10	3.7	13
115	Energy-Driven Kinetic Monte Carlo Method and Its Application in Fullerene Coalescence. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 2922-6	6.4	13
114	Interface-induced warping in hybrid two-dimensional materials. <i>Nano Research</i> , 2015 , 8, 2015-2023	10	13
113	Ground states of group-IV nanostructures: Magic structures of diamond and silicon nanocrystals. <i>Physical Review B</i> , 2011 , 83,	3.3	13
112	In situ observations of fullerene fusion and ejection in carbon nanotubes. <i>Nanoscale</i> , 2010 , 2, 2077-9	7.7	13
111	Optical imaging of carrier dynamics in silicon with subwavelength resolution. <i>Applied Physics Letters</i> , 1997 , 70, 1656-1658	3.4	13
110	Friction and adhesion properties of vertically aligned multi-walled carbon nanotube arrays and fluoro-nanodiamond films. <i>Carbon</i> , 2008 , 46, 1294-1301	10.4	13
109	Solid Papor Reaction Growth of Transition-Metal Dichalcogenide Monolayers. <i>Angewandte Chemie</i> , 2016 , 128, 10814-10819	3.6	13
108	Graphene as an electrochemical transfer layer. <i>Carbon</i> , 2019 , 141, 266-273	10.4	13
107	Indentation Tests Reveal Geometry-Regulated Stiffening of Nanotube Junctions. <i>Nano Letters</i> , 2016 , 16, 232-6	11.5	12
106	Highly Tunable Electronic Structures of Phosphorene/Carbon Nanotube Heterostructures through External Electric Field and Atomic Intercalation. <i>Nano Letters</i> , 2017 , 17, 7995-8004	11.5	12
105	Nonlinear analysis of a SWCNT over a bundle of nanotubes. <i>International Journal of Solids and Structures</i> , 2004 , 41, 6925-6936	3.1	12
104	Arnold-Chiari malformation in a captive African lion cub. <i>Journal of Wildlife Diseases</i> , 1998 , 34, 661-6	1.3	12
103	Nanochimneys: Topology and Thermal Conductance of 3D Nanotube@raphene Cone Junctions. Journal of Physical Chemistry C, 2017 , 121, 1257-1262	3.8	11
102	Grain boundaries in hybrid two-dimensional materials. <i>Journal of the Mechanics and Physics of Solids</i> , 2014 , 70, 62-70	5	11
101	An Atomistic Tomographic Study of Oxygen and Hydrogen Atoms and their Molecules in CVD Grown Graphene. <i>Small</i> , 2015 , 11, 5968-74	11	11

100	Further Evidence of Inadequate Quality in Lateral Flow Devices Commercially Offered for the Diagnosis of Rabies. <i>Tropical Medicine and Infectious Disease</i> , 2020 , 5,	3.5	10
99	Unusual Negative Formation Enthalpies and Atomic Ordering in Isovalent Alloys of Transition Metal Dichalcogenide Monolayers. <i>Chemistry of Materials</i> , 2018 , 30, 1547-1555	9.6	10
98	Energy decomposition analysis of metal silicide nanowires from first principles. <i>Physical Review B</i> , 2007 , 75,	3.3	10
97	Suprasellar differentiated germ cell tumor in a male dog. <i>Journal of Veterinary Diagnostic Investigation</i> , 1993 , 5, 462-7	1.5	10
96	Heterobilayer with Ferroelectric Switching of Topological State. <i>Nano Letters</i> , 2021 , 21, 785-790	11.5	10
95	Glass composites reinforced with silicon-doped carbon nanotubes. <i>Carbon</i> , 2018 , 128, 231-236	10.4	9
94	Hexagonal layered group IV-VI semiconductors and derivatives: fresh blood of the 2D family. <i>Nanoscale</i> , 2020 , 12, 13450-13459	7.7	8
93	Unusual electronic and magnetic properties of lateral phosphoreneWSe2 heterostructures. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 6657-6665	7.1	8
92	Realizing Indirect-to-Direct Band Gap Transition in Few-Layer Two-Dimensional MX2 (M = Mo, W; X = S, Se). <i>ACS Applied Energy Materials</i> , 2018 , 1, 4115-4121	6.1	8
91	Armchair or Zigzag? A tool for characterizing graphene edge. <i>Computer Physics Communications</i> , 2011 , 182, 804-807	4.2	8
90	Canine medullary thyroid carcinoma with unusual distant metastases. <i>Journal of Veterinary Diagnostic Investigation</i> , 1993 , 5, 284-8	1.5	8
89	Theoretical Prediction of Two-Dimensional Materials, Behavior, and Properties. ACS Nano, 2021 , 15, 59	5 2659 7	6 8
88	Zwitterionic ultrathin covalent organic polymers for high-performance electrocatalytic carbon dioxide reduction. <i>Applied Catalysis B: Environmental</i> , 2021 , 284, 119750	21.8	8
87	Correlation between types of defects/vacancies of Bi2S3 nanostructures and their transient photocurrent. <i>Nano Research</i> , 2017 , 10, 2405-2414	10	7
86	Phase crossover in transition metal dichalcogenide nanoclusters. <i>Nanoscale</i> , 2016 , 8, 19154-19160	7.7	7
85	Ultrasharp h-BN Nanocones and the Origin of Their High Mechanical Stiffness and Large Dipole Moment. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 5086-5091	6.4	7
84	XTRANS: An electron transport package for current distribution and magnetic field in helical nanostructures. <i>Computational Materials Science</i> , 2014 , 83, 426-433	3.2	7
83	Site-percolation threshold of carbon nanotube fibers Bast inspection of percolation with Markov stochastic theory. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2014 , 407, 341-349	3.3	7

(2021-2015)

82	Buckling Patterns of Graphene B oron Nitride Alloy on Ru(0001). <i>Advanced Materials Interfaces</i> , 2015 , 2, 1500322	4.6	7
81	Cattle rabies vaccinationA longitudinal study of rabies antibody titres in an Israeli dairy herd. <i>Preventive Veterinary Medicine</i> , 2015 , 121, 170-5	3.1	7
80	Magnesium Boride Nanotubes: Relative Stability and Atomic and Electronic Structure. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 4852-4856	3.8	7
79	Interaction of low-energy ions and atoms of light elements with a fluorinated carbon molecular lattice. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 1508-14	2.8	7
78	Atomic Layers of Graphene for Microbial Corrosion Prevention. ACS Nano, 2021, 15, 447-454	16.7	7
77	Nanoscale Probing of Image-Potential States and Electron Transfer Doping in Borophene Polymorphs. <i>Nano Letters</i> , 2021 , 21, 1169-1174	11.5	7
76	Modulating Blue Phosphorene by Synergetic Codoping: Indirect to Direct Gap Transition and Strong Bandgap Bowing. <i>Advanced Functional Materials</i> , 2019 , 29, 1808721	15.6	6
75	Structure and Dynamics of the Electronic Heterointerfaces in MoS by First-Principles Simulations. Journal of Physical Chemistry Letters, 2020 , 11, 1644-1649	6.4	6
74	Kinetic theory for the formation of diamond nanothreads with desired configurations: a strain-temperature controlled phase diagram. <i>Nanoscale</i> , 2018 , 10, 9664-9672	7.7	6
73	Franck Condon shift assessment in 2D MoS. <i>Journal of Physics Condensed Matter</i> , 2018 , 30, 095501	1.8	6
7 2	Ionic Graphitization of Ultrathin Films of Ionic Compounds. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 2659-63	6.4	6
71	Mechanisms and theoretical simulations of the catalytic growth of nanocarbons. <i>MRS Bulletin</i> , 2017 , 42, 794-801	3.2	6
70	Characterization of tin(II) sulfide defects/vacancies and correlation with their photocurrent. <i>Nano Research</i> , 2017 , 10, 218-228	10	6
69	Tunable Gigahertz Oscillators of Gliding Incommensurate Bilayer Graphene Sheets. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2013 , 80,	2.7	6
68	Kinetics, morphology and pulling regimes for sensing tips in near-field microscopy. <i>Ultramicroscopy</i> , 1995 , 57, 241-245	3.1	6
67	Interstitial cell (Leydig) tumor in an eland (Taurotragus oryx). <i>Journal of Wildlife Diseases</i> , 1994 , 30, 291	-4 .3	6
66	Scale-Enhanced Magnetism in Exfoliated Atomically Thin Magnetite Sheets. Small, 2020, 16, e2004208	11	6
65	Dimensionality-Reduced Fermi Level Pinning in Coplanar 2D Heterojunctions. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 4299-4305	6.4	6

64	Bandgap engineering of two-dimensional C3N bilayers. <i>Nature Electronics</i> , 2021 , 4, 486-494	28.4	6
63	Tailoring the Electronic and Magnetic Properties of Two-Dimensional Silicon Carbide Sheets and Ribbons by Fluorination. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 15407-15414	3.8	6
62	Controllable and Predictable Viscoelastic Behavior of 3D Boron-Doped Multiwalled Carbon Nanotube Sponges. <i>Particle and Particle Systems Characterization</i> , 2016 , 33, 21-26	3.1	6
61	Semiconducting \(\text{\text{\text{Boron}}}\) boron sheet with high mobility and low all-boron contact resistance: a first-principles study. \(\text{Nanoscale}\), \(\text{2021}\), 13, 8474-8480	7.7	6
60	Effect of Captatalyst Structural Correlation on the Nucleation of Carbon Nanotubes. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 18789-18794	3.8	5
59	A jellium model of a catalyst particle in carbon nanotube growth. <i>Journal of Chemical Physics</i> , 2017 , 146, 244701	3.9	5
58	Effect of carbon network defects on the electronic structure of semiconductor single-wall carbon nanotubes. <i>Physics of the Solid State</i> , 2004 , 46, 1168-1172	0.8	5
57	Complementary behaviour of EDL and HER activity in functionalized graphene nanoplatelets. <i>Nanoscale</i> , 2020 , 12, 1790-1800	7.7	5
56	Computational Modeling of 2D Materials under High Pressure and Their Chemical Bonding: Silicene as Possible Field-Effect Transistor. <i>ACS Nano</i> , 2021 , 15, 6861-6871	16.7	5
55	Detecting the Biopolymer Behavior of Graphene Nanoribbons in Aqueous Solution. <i>Scientific Reports</i> , 2016 , 6, 31174	4.9	5
54	Kinetically Determined Shapes of Grain Boundaries in Graphene. ACS Nano, 2021, 15, 4893-4900	16.7	5
53	Tuning Metal Elements in Open Frameworks for Efficient Oxygen Evolution and Oxygen Reduction Reaction Catalysts. <i>ACS Applied Materials & Englishing Catalysts</i> , 13, 42715-42723	9.5	5
52	Enhancing Mechanical Properties of Nanocomposites Using Interconnected Carbon Nanotubes (iCNT) as Reinforcement . <i>Advanced Engineering Materials</i> , 2017 , 19, 1600499	3.5	4
51	Electromechanical coupling effect on electronic properties of double-walled boron nitride nanotubes. <i>Acta Mechanica Sinica/Lixue Xuebao</i> , 2012 , 28, 1532-1538	2	4
50	Mesoscale reverse stick-slip nanofriction behavior of vertically aligned multiwalled carbon nanotube superlattices. <i>Applied Physics Letters</i> , 2008 , 92, 203115	3.4	4
49	Gas-Phase "Prehistory" and Molecular Precursors in Monolayer Metal Dichalcogenides Synthesis: The Case of MoS. <i>ACS Nano</i> , 2021 , 15, 10525-10531	16.7	4
48	Width-dependent phase crossover in transition metal dichalcogenide nanoribbons. <i>Nanotechnology</i> , 2019 , 30, 075701	3.4	4
47	Structure-Dependent Electrical and Magnetic Properties of Iron Oxide Composites. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2019 , 216, 1801004	1.6	3

(2021-2017)

46	Mechanics of Materials Creation: Nanotubes, Graphene, Carbyne, Borophenes. <i>Procedia IUTAM</i> , 2017 , 21, 17-24		3	
45	Graphene: Unraveling the Sinuous Grain Boundaries in Graphene (Adv. Funct. Mater. 3/2015). <i>Advanced Functional Materials</i> , 2015 , 25, 496-496	15.6	3	
44	Zeolite Nanosheets Stabilize Catalyst Particles to Promote the Growth of Thermodynamically Unfavorable, Small-Diameter Carbon Nanotubes. <i>Small</i> , 2020 , 16, e2002120	11	3	
43	What Dictates Rashba Splitting in 2D van der Waals Heterobilayers. <i>Journal of the American Chemical Society</i> , 2021 , 143, 3503-3508	16.4	3	
42	Fatigue in assemblies of indefatigable carbon nanotubes Science Advances, 2021, 7, eabj6996	14.3	3	
41	Salt-Assisted MoS Growth: Molecular Mechanisms from the First Principles <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	3	
40	Atomic-scale Observation of Grains and Grain Boundaries in Monolayers of WS2. <i>Microscopy and Microanalysis</i> , 2014 , 20, 1084-1085	0.5	2	
39	InnenrEktitelbild: Two-Dimensional Boron Monolayers Mediated by Metal Substrates (Angew. Chem. 44/2015). <i>Angewandte Chemie</i> , 2015 , 127, 13329-13329	3.6	2	
38	Comment on "Mechanism for superelongation of carbon nanotubes at high temperatures". <i>Physical Review Letters</i> , 2009 , 103, 039601; author reply 039602	7.4	2	
37	Fast liquid-phase bimolecular reactions of aromatic free radicals. <i>Reviews of Chemical Intermediates</i> , 1986 , 7, 271-300		2	
36	Nanomechanics. The Electrical Engineering Handbook, 2002,		2	
35	Step-Edge Epitaxy for Borophene Growth on Insulators. ACS Nano, 2021,	16.7	2	
34	Phase controlled synthesis of transition metal carbide nanocrystals by ultrafast flash Joule heating <i>Nature Communications</i> , 2022 , 13, 262	17.4	2	
33	Electronic and Magnetic Diversity of Graphone/Graphene Superlattices. <i>Chemistry of Materials</i> , 2021 , 33, 2090-2098	9.6	2	
32	Dimensionality-Inhibited Chemical Doping in Two-Dimensional Semiconductors: The Phosphorene and MoS from Charge-Correction Method. <i>Nano Letters</i> , 2021 , 21, 6711-6717	11.5	2	
31	Piezo-response in two-dimensional ⊞ellurene films. <i>Materials Today</i> , 2021 , 44, 40-47	21.8	2	
30	Substitution of copper atoms into defect-rich molybdenum sulfides and their electrocatalytic activity. <i>Nanoscale Advances</i> , 2021 , 3, 1747-1757	5.1	2	
29	Stable Low-Dimensional Boron Chalcogenides from Planar Structural Motifs. <i>Journal of Physical Chemistry A</i> , 2021 , 125, 6059-6063	2.8	2	

28	Atomic Molybdenum for Synthesis of Ammonia with 50% Faradic Efficiency Small, 2022, e2106327	11	2
27	Nickel particle-enabled width-controlled growth of bilayer molybdenum disulfide nanoribbons. <i>Science Advances</i> , 2021 , 7, eabk1892	14.3	2
26	Electronic Doping Controlled Migration of Dislocations in Polycrystalline 2D WS. Small, 2019, 15, e1805	1 <u>4</u> 5	1
25	Dirac states from px,y orbitals in the buckled honeycomb structures: A tight-binding model and first-principles combined study. <i>Chinese Physics B</i> , 2018 , 27, 087101	1.2	1
24	2D Materials: Quaternary 2D Transition Metal Dichalcogenides (TMDs) with Tunable Bandgap (Adv. Mater. 35/2017). <i>Advanced Materials</i> , 2017 , 29,	24	1
23	Defects in Two-Dimensional Materials359-378		1
22	Correction: Two-dimensional boron: structures, properties and applications. <i>Chemical Society Reviews</i> , 2017 , 46, 7470	58.5	1
21	In-situ Observation of Graphene Sublimation and Edge Reconstructions. <i>Microscopy and Microanalysis</i> , 2009 , 15, 1164-1165	0.5	1
20	Borophane Polymorphs Journal of Physical Chemistry Letters, 2022, 1107-1113	6.4	1
19	Iron corrosion in the IhertIsupercritical CO2, ab initio dynamics insights: How impurities matter. <i>Matter</i> , 2022 , 5, 751-762	12.7	1
18	Genotyping and phylogenetic analysis of bovine viral diarrhea virus (BVDV) isolates in Kosovo. <i>Veterinaria Italiana</i> , 2014 , 50, 69-72	1	1
17	Two-Dimensional Nanomaterials for the Development of Efficient Gas Sensors: Recent Advances, Challenges, and Future Perspectives. <i>Advanced Materials Technologies</i> ,2101252	6.8	1
16	GrapheneDiamond Transformation: Nano-Thermodynamics of Chemically Induced GrapheneDiamond Transformation (Small 47/2020). <i>Small</i> , 2020 , 16, 2070256	11	1
15	Dual Role of Adsorbent and Non-monotonic Transfer p-Doping of Diamond. <i>ACS Applied Materials</i> & amp; Interfaces, 2021 , 13, 4676-4681	9.5	1
14	Quaternary Alloys: Thermally Induced 2D Alloy-Heterostructure Transformation in Quaternary Alloys (Adv. Mater. 45/2018). <i>Advanced Materials</i> , 2018 , 30, 1870344	24	1
13	Stress-dominated growth of two-dimensional materials on nonplanar substrates. <i>Journal of the Mechanics and Physics of Solids</i> , 2021 , 157, 104645	5	1
12	Borophenes: Insights and Predictions From Computational Analyses 2021 , 27-49		О
11	Short Term Safety, Immunogenicity, and Reproductive Effects of Combined Vaccination With Anti-GnRH (Gonacon) and Rabies Vaccines in Female Feral Cats. <i>Frontiers in Veterinary Science</i> , 2021 , 8, 650291	3.1	O

LIST OF PUBLICATIONS

10	Seasonal variation in bait uptake and seropositivity during a multi-year biannual oral rabies fox vaccination programme in Kosovo (2010-2015). <i>Preventive Veterinary Medicine</i> , 2020 , 181, 105050	3.1
9	High electric field enhancement near electron-doped semiconductor nanoribbons. <i>Chemical Physics Letters</i> , 2012 , 546, 99-105	2.5
8	QUASI-ONE-DIMENSIONAL SILICON NANOSTRUCTURES 2008 , 289-313	
7	Mechanisms of inelastic scattering of low-energy protons by C6H6, C60, C6F12, and C60F48 molecules. <i>Physics of the Solid State</i> , 2006 , 48, 177-184	0.8
6	DESIGN AND RELATIVE STABILITY OF MULTICOMPONENT NANOWIRES 2006 , 243-244	
5	Nanomechanics: Physics between Engineering and Chemistry. <i>ICASE/LaRC Interdisciplinary Series in Science and Engineering</i> , 2003 , 3-33	
4	Carbon Nanotubes: Supramolecular Mechanics 2014 , 730-743	
3	Dimensionality effects in crystal plasticity, from 3D silicon to 2D silicene. <i>Extreme Mechanics Letters</i> , 2020 , 40, 100892	3.9
2	Carbon Fibers: Carbonization with Misfusion: Fundamental Limits of Carbon-Fiber Strength Revisited (Adv. Mater. 46/2016). <i>Advanced Materials</i> , 2016 , 28, 10342-10342	24
1	Energetics of graphene origami and their Bpatial resolution MRS Bulletin, 2021, 46, 481-486	3.2