Susanne Schmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1614124/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The influence of sucrose on soil nitrogen availability – A root exudate simulation using microdialysis. Geoderma, 2022, 409, 115645.	2.3	7
2	Resting Subtropical Grasslands from Grazing in the Wet Season Boosts Biocrust Hotspots to Improve Soil Health. Agronomy, 2022, 12, 62.	1.3	4
3	Editorial: Nitrogen Use Efficiency and Sustainable Nitrogen Management in Crop Plants. Frontiers in Plant Science, 2022, 13, 862091.	1.7	6
4	Biofertilizers can enhance nitrogen use efficiency of sugarcane. Environmental Microbiology, 2022, 24, 3655-3671.	1.8	6
5	A Research Road Map for Responsible Use of Agricultural Nitrogen. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	48
6	Organic Wastes Amended with Sorbents Reduce N2O Emissions from Sugarcane Cropping. Environments - MDPI, 2021, 8, 78.	1.5	3
7	AusTraits, a curated plant trait database for the Australian flora. Scientific Data, 2021, 8, 254.	2.4	73
8	lsotopic fractionation from deep roots to tall shoots: A forensic analysis of xylem water isotope composition in mature tropical savanna trees. Science of the Total Environment, 2021, 795, 148675.	3.9	16
9	Algae biofertilisers promote sustainable food production and a circular nutrient economy – An integrated empirical-modelling study. Science of the Total Environment, 2021, 796, 148913.	3.9	15
10	Tropical Rainforest Restoration Plantations Are Slow to Restore the Soil Biological and Organic Carbon Characteristics of Old Growth Rainforest. Microbial Ecology, 2020, 79, 432-442.	1.4	11
11	Effects of commercial microbial biostimulants on soil and root microbial communities and sugarcane yield. Biology and Fertility of Soils, 2020, 56, 565-580.	2.3	20
12	Towards the circular nitrogen economy – A global meta-analysis of composting technologies reveals much potential for mitigating nitrogen losses. Science of the Total Environment, 2020, 704, 135401.	3.9	54
13	Microdialysis in soil environments: Current practice and future perspectives. Soil Biology and Biochemistry, 2020, 143, 107743.	4.2	32
14	Safeguarding human and planetary health demands a fertilizer sector transformation. Plants People Planet, 2020, 2, 302-309.	1.6	31
15	Structural elements that modulate the substrate specificity of plant purple acid phosphatases: Avenues for improved phosphorus acquisition in crops. Plant Science, 2020, 294, 110445.	1.7	37
16	Soil organic carbon recovery in tropical tree plantations may depend on restoration of soil microbial composition and function. Geoderma, 2019, 353, 70-80.	2.3	17
17	Soil Phosphorus Modeling for Modern Agriculture Requires Balance of Science and Practicality: A Perspective. Journal of Environmental Quality, 2019, 48, 1281-1294.	1.0	20
18	Microdialysis as an in situ technique for sampling soil enzymes. Soil Biology and Biochemistry, 2019, 135, 20-27.	4.2	21

#	Article	IF	CITATIONS
19	Without management interventions, endemic wetâ€sclerophyll forest is transitioning to rainforest in World Heritage listed K'gari (Fraser Island), Australia. Ecology and Evolution, 2019, 9, 1378-1393.	0.8	6
20	Responses to competition for nitrogen between subtropical native tree seedlings and exotic grasses are species-specific and mediated by soil N availability. Tree Physiology, 2019, 39, 404-416.	1.4	14
21	Drivers of Phosphorus Efficiency in Tropical and Subtropical Cropping Systems. Proceedings (mdpi), 2019, 36, .	0.2	0
22	Relationship between microbial composition and substrate use efficiency in a tropical soil. Geoderma, 2018, 315, 96-103.	2.3	41
23	Climate and soils together regulate photosynthetic carbon isotope discrimination within C ₃ plants worldwide. Global Ecology and Biogeography, 2018, 27, 1056-1067.	2.7	85
24	Effects of the growth environment on the yield and material properties of nanocellulose derived from the Australian desert grass Triodia. Industrial Crops and Products, 2018, 126, 238-249.	2.5	7
25	Optimising methods for the recovery and quantification of di- and tripeptides in soil. Soil Research, 2018, 56, 404.	0.6	8
26	The effect of heterogeneous soil bulk density on root growth of field-grown mangrove species. Plant and Soil, 2018, 432, 91-105.	1.8	30
27	Post-anthesis nitrate uptake is critical to yield and grain protein content in Sorghum bicolor. Journal of Plant Physiology, 2017, 216, 118-124.	1.6	20
28	A comparative study on student perceptions of their learning outcomes in undergraduate science degree programmes with differing curriculum models. International Journal of Science Education, 2017, 39, 742-760.	1.0	8
29	Amino acid transporter mutants of <i>Arabidopsis</i> provides evidence that a nonâ€mycorrhizal plant acquires organic nitrogen from agricultural soil. Plant, Cell and Environment, 2017, 40, 413-423.	2.8	63
30	The vegetative nitrogen response of sorghum lines containing different alleles for nitrate reductase and glutamate synthase. Molecular Breeding, 2017, 37, 1.	1.0	3
31	Evolutionary conservation of a core root microbiome across plant phyla along a tropical soil chronosequence. Nature Communications, 2017, 8, 215.	5.8	244
32	Improving in situ recovery of soil nitrogen using the microdialysis technique. Soil Biology and Biochemistry, 2017, 114, 93-103.	4.2	24
33	The core root microbiome of sugarcanes cultivated under varying nitrogen fertilizer application. Environmental Microbiology, 2016, 18, 1338-1351.	1.8	149
34	Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database. GigaScience, 2016, 5, 21.	3.3	204
35	Crosstalk between sugarcane and a plant-growth promoting Burkholderia species. Scientific Reports, 2016, 6, 37389.	1.6	92
36	Nitrogen fluxes at the root-soil interface show a mismatch of nitrogen fertilizer supply and sugarcane root uptake capacity. Scientific Reports, 2015, 5, 15727.	1.6	76

#	Article	IF	CITATIONS
37	Species turnover of corticolous bryophyte assemblages over 15 years in an Australian subtropical cloud forest. Austral Ecology, 2015, 40, 877-885.	0.7	1
38	Easily deconstructed, high aspect ratio cellulose nanofibres from Triodia pungens; an abundant grass of Australia's arid zone. RSC Advances, 2015, 5, 32124-32132.	1.7	60
39	Nitrogen fertilizer dose alters fungal communities in sugarcane soil and rhizosphere. Scientific Reports, 2015, 5, 8678.	1.6	155
40	Natural abundance (δ15N) indicates shifts in nitrogen relations of woody taxa along a savanna–woodland continental rainfall gradient. Oecologia, 2015, 178, 297-308.	0.9	21
41	Subtropical giant podzol chronosequence reveals that soil carbon stabilisation is not governed by litter quality. Biogeochemistry, 2015, 124, 205-217.	1.7	13
42	Yeast as a Biofertilizer Alters Plant Growth and Morphology. Crop Science, 2014, 54, 785-790.	0.8	35
43	Early Response of Soil Properties and Function to Riparian Rainforest Restoration. PLoS ONE, 2014, 9, e104198.	1.1	27
44	Harvesting as an Alternative to Burning for Managing Spinifex Grasslands in Australia. Advances in Ecology, 2014, 2014, 1-11.	0.5	6
45	Soil microbial responses to labile carbon input differ in adjacent sugarcane and forest soils. Soil Research, 2014, 52, 307.	0.6	5
46	The effect of protein supplied in the growth medium on plant pathogen resistance. Plant Signaling and Behavior, 2014, 9, e976159.	1.2	5
47	A new species of <scp><i>B</i></scp> <i>urkholderia </i> isolated from sugarcane roots promotes plant growth. Microbial Biotechnology, 2014, 7, 142-154.	2.0	91
48	Assessing refrigerating and freezing effects on the biological/chemical composition of two livestock manures. Agriculture, Ecosystems and Environment, 2014, 197, 288-292.	2.5	10
49	Patterns of rain forest plant endemism in subtropical Australia relate to stable mesic refugia and species dispersal limitations. Journal of Biogeography, 2014, 41, 222-238.	1.4	67
50	Moving beyond the conceptual: specificity in regional climate change adaptation actions for biodiversity in South East Queensland, Australia. Regional Environmental Change, 2014, 14, 435-447.	1.4	26
51	Organic nitrogen. New Phytologist, 2014, 203, 29-31.	3.5	15
52	Effects of externally supplied protein on root morphology and biomass allocation in Arabidopsis. Scientific Reports, 2014, 4, 5055.	1.6	29
53	A meta-analytical global comparison of aboveground biomass accumulation between tropical secondary forests and monoculture plantations. Forest Ecology and Management, 2013, 291, 73-86.	1.4	111
54	The mixotrophic nature of photosynthetic plants. Functional Plant Biology, 2013, 40, 425.	1.1	33

4

#	Article	IF	CITATIONS
55	Microbial function in adjacent subtropical forest and agricultural soil. Soil Biology and Biochemistry, 2013, 57, 68-77.	4.2	38
56	Assessing the vulnerability of an assemblage of subtropical rainforest vertebrate species to climate change in southâ€east Queensland. Austral Ecology, 2013, 38, 465-475.	0.7	15
57	Reclaiming Degraded Rainforest: A Spatial Evaluation of Gains and Losses in Subtropical Eastern Australia to Inform Future Investment in Restoration. Restoration Ecology, 2013, 21, 481-489.	1.4	3
58	Species-site matching in mixed species plantations of native trees in tropical Australia. Agroforestry Systems, 2013, 87, 233-250.	0.9	25
59	Carbon sequestration and soil fertility of tropical tree plantations and secondary forest established on degraded land. Plant and Soil, 2013, 362, 187-200.	1.8	56
60	Indigenous and modern biomaterials derived from Triodia (â€~spinifex') grasslands in Australia. Australian Journal of Botany, 2012, 60, 114.	0.3	25
61	Past, present and future of organic nutrients. Plant and Soil, 2012, 359, 1-18.	1.8	104
62	Amino acids are a nitrogen source for sugarcane. Functional Plant Biology, 2012, 39, 503.	1.1	22
63	Soluble inorganic and organic nitrogen in two Australian soils under sugarcane cultivation. Agriculture, Ecosystems and Environment, 2012, 155, 16-26.	2.5	29
64	Effect of fire and treeâ€grass patches on soil nitrogen in Australian tropical savannas. Austral Ecology, 2012, 37, 668-677.	0.7	15
65	Arabidopsis and Lobelia anceps access small peptides as a nitrogen source for growth. Functional Plant Biology, 2011, 38, 788.	1.1	39
66	Nitrate Paradigm Does Not Hold Up for Sugarcane. PLoS ONE, 2011, 6, e19045.	1.1	148
67	Early emergence and resource availability can competitively favour natives over a functionally similar invader. Oecologia, 2010, 163, 775-784.	0.9	43
68	Effect of woody vegetation clearing on nutrient and carbon relations of semi-arid dystrophic savanna. Plant and Soil, 2010, 331, 79-90.	1.8	5
69	Turning the Table: Plants Consume Microbes as a Source of Nutrients. PLoS ONE, 2010, 5, e11915.	1.1	136
70	Perennial lifestylean adaptation to nutrient limitation?. Tree Physiology, 2010, 30, 1047-1049.	1.4	65
71	Nitrogen partitioning in orchard-grown Macadamia integrifolia. Tree Physiology, 2010, 30, 244-256.	1.4	11
72	Development of an Environmental Functional Gene Microarray for Soil Microbial Communities. Applied and Environmental Microbiology, 2010, 76, 7161-7170.	1.4	37

5

#	Article	IF	CITATIONS
73	DNA Is Taken Up by Root Hairs and Pollen, and Stimulates Root and Pollen Tube Growth Â. Plant Physiology, 2010, 153, 799-805.	2.3	60
74	Uptake of non-pathogenicE. coliby Arabidopsis induces down-regulation of heat shock proteins. Plant Signaling and Behavior, 2010, 5, 1626-1628.	1.2	6
75	Nitrogen and phosphorus additions negatively affect tree species diversity in tropical forest regrowth trajectories. Ecology, 2010, 91, 2121-2131.	1.5	63
76	DNA uptake by Arabidopsis induces changes in the expression of CLE peptides which control root morphology. Plant Signaling and Behavior, 2010, 5, 1112-1114.	1.2	11
77	A quantitative genetics approach to nitrogen use efficiency in sugarcane. Functional Plant Biology, 2010, 37, 448.	1.1	12
78	Atmospheric concentrations of ammonia and nitrogen dioxide at a tropical coral cay with high seabird density. Journal of Environmental Monitoring, 2010, 12, 460-465.	2.1	15
79	Complementary resource use by tree species in a rain forest tree plantation. Ecological Applications, 2010, 20, 1237-1254.	1.8	31
80	Nitrogen affects cluster root formation and expression of putative peptide transporters. Journal of Experimental Botany, 2009, 60, 2665-2676.	2.4	55
81	Carbon storage in a Ferrosol under subtropical rainforest, tree plantations, and pasture is linked to soil aggregation. Soil Research, 2009, 47, 341.	0.6	16
82	Dominance of legume trees alters nutrient relations in mixed species forest restoration plantings within seven years. Biogeochemistry, 2008, 88, 89-101.	1.7	86
83	Nitrification and denitrification as sources of sediment nitrous oxide production: A microsensor approach. Marine Chemistry, 2008, 110, 68-76.	0.9	83
84	Isolation and analysis of mRNA from environmental microbial communities. Journal of Microbiological Methods, 2008, 75, 172-176.	0.7	95
85	Plants can use protein as a nitrogen source without assistance from other organisms. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4524-4529.	3.3	296
86	Impacts of the biocontrol agentMalacorhinus irregularis(Coleoptera, Chrysomelidae) onMimosa pigraseedlings and the importance of root nodules. Biocontrol Science and Technology, 2007, 17, 365-374.	0.5	2
87	Sugarcane genotypes differ in internal nitrogen use efficiency. Functional Plant Biology, 2007, 34, 1122.	1.1	40
88	Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Letters, 2007, 581, 2281-2289.	1.3	323
89	Soil carbon turnover and sequestration in native subtropical tree plantations. Soil Biology and Biochemistry, 2007, 39, 2078-2090.	4.2	69
90	The OJIP fast fluorescence rise characterizes Graptophyllum species and their stress responses. Photosynthesis Research, 2007, 94, 423-436.	1.6	69

#	Article	IF	CITATIONS
91	Modelling predicts positive and negative interactions between three Australian tropical tree species in monoculture and binary mixture. Forest Ecology and Management, 2006, 233, 315-323.	1.4	17
92	Effects of nitrogen source and ectomycorrhizal association on growth and δ15N of two subtropical Eucalyptus species from contrasting ecosystems. Functional Plant Biology, 2006, 33, 367.	1.1	12
93	Adaptations of strangler figs to life in the rainforest canopy. Functional Plant Biology, 2006, 33, 465.	1.1	13
94	Nitrogen ecophysiology of Heron Island, a subtropical coral cay of the Great Barrier Reef, Australia. Functional Plant Biology, 2004, 31, 517.	1.1	46
95	Nutrient dynamics in Queensland savannas: implications for the sustainability of land clearing for pasture production. Rangeland Journal, 2002, 24, 96.	0.4	22
96	Growth of subtropical ECM fungi with different nitrogen sources using a new floating culture technique. Mycological Research, 2002, 106, 74-85.	2.5	20
97	Impact of point source pollution on nitrogen isotope signatures (δ15N) of vegetation in SE Brazil. Oecologia, 2002, 131, 468-472.	0.9	67
98	15N natural abundance of fossil peat reflects the influence of animal-derived nitrogen on vegetation. Oecologia, 2002, 130, 309-314.	0.9	24
99	Research note: Rapid isolation of total RNA and genomic DNA from Hakea actities. Functional Plant Biology, 2002, 29, 1015.	1.1	9
100	Natural abundance of stable carbon and nitrogen isotopes in Cannabis sativa reflects growth conditions. Functional Plant Biology, 2001, 28, 1005.	1.1	11
101	Title is missing!. Plant and Soil, 1999, 215, 73-84.	1.8	10
102	Subantarctic Macquarie Island - a model ecosystem for studying animal-derived nitrogen sources using 15 N natural abundance. Oecologia, 1998, 117, 187-193.	0.9	167
103	Transport, storage and mobilization of nitrogen by trees and shrubs in the wet/dry tropics of northern Australia. Tree Physiology, 1998, 18, 403-410.	1.4	47
104	Root adaptation and nitrogen source acquisition in natural ecosystems. Tree Physiology, 1996, 16, 941-948.	1.4	78