Sreekant Vj Narumanchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/161401/publications.pdf Version: 2024-02-01

3

#	Article	IF	CITATIONS
1	Electric-Drive Vehicle Power Electronics Thermal Management: Current Status, Challenges, and Future Directions. Journal of Electronic Packaging, Transactions of the ASME, 2022, 144, .	1.8	27
2	Reliability and Lifetime Prediction Model of Sintered Silver Under High-Temperature Cycling. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 5181-5191.	5.4	7
3	Validation and Parametric Investigations of an Internal Permanent Magnet Motor Using a Lumped Parameter Thermal Model. Journal of Electronic Packaging, Transactions of the ASME, 2022, 144, .	1.8	8
4	Single-Phase Dielectric Fluid Thermal Management for Power-Dense Automotive Power Electronics. IEEE Transactions on Power Electronics, 2022, 37, 12474-12485.	7.9	10
5	Energy Use in Quantum Data Centers: Scaling the Impact of Computer Architecture, Qubit Performance, Size, and Thermal Parameters. IEEE Transactions on Sustainable Computing, 2022, 7, 864-874.	3.1	6
6	Experimental and numerical study of heat transfer characteristics of single-phase free-surface fan jet impingement with automatic transmission fluid. International Journal of Heat and Mass Transfer, 2021, 166, 120731.	4.8	5
7	The rise of electric vehicles—2020 status and future expectations. Progress in Energy, 2021, 3, 022002.	10.9	132
8	Thermal and Mechanical Design of a High-Voltage Power Electronics Package. , 2021, , .		1
9	Dielectric Fluids for the Direct Forced Convection Cooling of Power Electronics. , 2021, , .		2
10	Packaging of an 8-kV Silicon Carbide Diode Module with Double-Side Cooling and Sintered-Silver Joints. , 2021, , .		9
11	A perspective on the electro-thermal co-design of ultra-wide bandgap lateral devices. Applied Physics Letters, 2021, 119, .	3.3	28
12	Parametric Design Study of a Power Electronics Package for Improving Solder Joint Reliability. , 2020, ,		1
13	Guest Editorial: Interpack 2019. Journal of Electronic Packaging, Transactions of the ASME, 2020, , .	1.8	0
14	Validation and Parametric Investigations Using a Lumped Thermal Parameter Model of an Internal Permanent Magnet Motor. , 2020, , .		1
15	Comparison of Thermal Management Approaches for Integrated Traction Drives in Electric Vehicles. , 2020, , .		0
16	Modeling and Analysis of Gallium Oxide Vertical Transistors. ECS Journal of Solid State Science and Technology, 2019, 8, Q3202-Q3205.	1.8	21
17	Liquid-Cooled Aluminum Silicon Carbide Heat Sinks for Reliable Power Electronics Packages. Journal of Electronic Packaging, Transactions of the ASME, 2019, 141, .	1.8	9

18 Modeling Needs for Power Semiconductor Devices and Power Electronics Systems. , 2019, , .

#	Article	IF	CITATIONS
19	Nucleate pool boiling of R-245fa at low saturation temperatures for hydrogen precooling applications. International Journal of Heat and Mass Transfer, 2019, 132, 172-183.	4.8	6
20	Experimental characterization and modeling of thermal resistance of electric machine lamination stacks. International Journal of Heat and Mass Transfer, 2019, 129, 152-159.	4.8	14
21	Surface Temperature Effect on Convective Heat Transfer Coefficients for Jet Impingement Cooling of Electric Machines With Automatic Transmission Fluid. , 2019, , .		7
22	Electrothermal Modeling and Analysis of Gallium Oxide Power Switching Devices. , 2019, , .		2
23	Mechanical Characterization Study of Sintered Silver Pastes Bonded in a Double-Lap Configuration. , 2018, , .		2
24	Thermal and Thermomechanical Modeling to Design a Gallium Oxide Power Electronics Package. , 2018, , .		8
25	Ultracompliant Heterogeneous Copper–Tin Nanowire Arrays Making a Supersolder. Nano Letters, 2018, 18, 3586-3592.	9.1	15
26	Transient Liquid Phase Bonding of AlN to AlSiC for Durable Power Electronic Packages. Advanced Engineering Materials, 2018, 20, 1800039.	3.5	16
27	Metal–Organic–Inorganic Nanocomposite Thermal Interface Materials with Ultralow Thermal Resistances. ACS Applied Materials & Interfaces, 2017, 9, 10120-10127.	8.0	17
28	Local-Scale Simulations of Nucleate Boiling on Micrometer-Featured Surfaces. , 2017, , .		0
29	Evaluation of performance and opportunities for improvements in automotive power electronics systems. , 2016, , .		13
30	Thermal management and reliability of power electronics and electric machines. , 2016, , .		1
31	Reliability of Emerging Bonded Interface Materials for Large-Area Attachments. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, 6, 40-49.	2.5	17
32	General multilayer heat transfer model for optical-based thermal characterization techniques. International Journal of Heat and Mass Transfer, 2016, 93, 695-706.	4.8	9
33	Nanothermal Interface Materials: Technology Review and Recent Results. Journal of Electronic Packaging, Transactions of the ASME, 2015, 137, .	1.8	92
34	Bubble dynamics and nucleate pool boiling heat transfer on microporous copper surfaces. International Journal of Heat and Mass Transfer, 2015, 89, 1297-1315.	4.8	112
35	Effects of Pressure and a Microporous Coating on HFC-245fa Pool Boiling Heat Transfer. Journal of Heat Transfer, 2014, 136, .	2.1	15
36	Effect of flow rate and subcooling on spray heat transfer on microporous copper surfaces. International Journal of Heat and Mass Transfer, 2014, 69, 493-505.	4.8	38

SREEKANT VJ NARUMANCHI

#	Article	IF	CITATIONS
37	Gaining Traction: Thermal Management and Reliability of Automotive Electric Traction-Drive Systems. IEEE Electrification Magazine, 2014, 2, 42-49.	1.8	14
38	Thermal performance and reliability characterization of bonded interface materials (BIMs). , 2014, , .		8
39	Advanced liquid cooling for a traction drive inverter using jet impingement and microfinned enhanced surfaces. , 2014, , .		13
40	Novel power electronics three-dimensional heat exchanger. , 2014, , .		4
41	Investigation of thermal interface materials using phase-sensitive transient thermoreflectance technique. , 2014, , .		3
42	Passive two-phase cooling for automotive power electronics. , 2014, , .		2
43	Microstructured Surfaces for Single-Phase Jet Impingement Heat Transfer Enhancement. Journal of Thermal Science and Engineering Applications, 2013, 5, .	1.5	14
44	Effects of Pressure and a Microporous Coating on HFC-245fa Pool Boiling Heat Transfer. , 2013, , .		1
45	Reliability of Bonded Interfaces for Automotive Power Electronics. , 2013, , .		9
46	Pool Boiling Heat Transfer Characteristics of HFO-1234yf on Plain and Microporous-Enhanced Surfaces. Journal of Heat Transfer, 2013, 135, .	2.1	24
47	Thermal conductance at atomically clean and disordered silicon/aluminum interfaces: A molecular dynamics simulation study. Journal of Applied Physics, 2012, 112, .	2.5	16
48	Design of light-weight, single-phase liquid-cooled heat exchanger for automotive power electronics. , 2012, , .		17
49	Thermal Performance and Reliability of Large-Area Bonded Interfaces in Power Electronics Packages. , 2011, , .		0
50	Pool Boiling Heat Transfer Characteristics of HFO-1234yf With and Without Microporous-Enhanced Surfaces. , 2011, , .		6
51	Molecular Dynamics Modeling of Thermal Conductance at Atomically Clean and Disordered Silicon/Aluminum Interfaces. , 2011, , .		1
52	Molecular Dynamics Modeling of Heat Transport in Metals and Semiconductors. , 2010, , .		0
53	Enhancement of Heat Transfer With Pool and Spray Impingement Boiling on Microporous and Nanowire Surface Coatings. , 2010, , .		5
54	Two-Phase Spray Cooling of Hybrid Vehicle Electronics. IEEE Transactions on Components and Packaging Technologies, 2009, 32, 501-512.	1.3	125

#	Article	IF	CITATIONS
55	Numerical simulations of nucleate boiling in impinging jets: Applications in power electronics cooling. International Journal of Heat and Mass Transfer, 2008, 51, 1-12.	4.8	61
56	Thermal interface materials for power electronics applications. Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2008, , .	0.0	107
57	Single-Phase Self-Oscillating Jets for Enhanced Heat Transfer. IEEE Semiconductor Thermal Measurement and Management Symposium, 2008, , .	0.0	10
58	Two-phase spray cooling of hybrid vehicle electronics. Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2008, , .	0.0	16
59	MEMS-enabled thermal management of high-heat-flux devices EDIFICE: embedded droplet impingement for integrated cooling of electronics. Experimental Thermal and Fluid Science, 2001, 25, 231-242.	2.7	109