John H Willis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1613727/publications.pdf

Version: 2024-02-01

159585 243625 4,052 44 30 44 citations h-index g-index papers 63 63 63 3586 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The genetic architecture and evolution of life-history divergence among perennials in the <i>Mimulus guttatus </i> species complex. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210077.	2.6	16
2	Populations Are Differentiated in Biological Rhythms without Explicit Elevational Clines in the Plant <i>Mimulus laciniatus</i> . Journal of Biological Rhythms, 2020, 35, 452-464.	2.6	5
3	Developmental Analysis of Mimulus Seed Transcriptomes Reveals Functional Gene Expression Clusters and Four Imprinted, Endosperm-Expressed Genes. Frontiers in Plant Science, 2020, 11, 132.	3.6	11
4	Dissecting the role of a large chromosomal inversion in life history divergence throughout the <i>Mimulus guttatus</i> species complex. Molecular Ecology, 2019, 28, 1343-1357.	3.9	53
5	Differential adaptation to a harsh granite outcrop habitat between sympatric <i>Mimulus</i> species. Evolution; International Journal of Organic Evolution, 2018, 72, 1225-1241.	2.3	32
6	Hybrid inviability and differential submergence tolerance drive habitat segregation between two congeneric monkeyflowers. Ecology, 2018, 99, 2776-2786.	3.2	18
7	Major <scp>QTL</scp> controls adaptation to serpentine soils in <i>Mimulus guttatus</i> Ecology, 2018, 27, 5073-5087.	3.9	34
8	Plastic breeding system response to day length in the California wildflower Mimulus douglasii. American Journal of Botany, 2018, 105, 779-787.	1.7	3
9	Selective trade-offs maintain alleles underpinning complex trait variation in plants. Science, 2018, 361, 475-478.	12.6	94
10	Population-genomic inference of the strength and timing of selection against gene flow. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7061-7066.	7.1	114
11	Geographic Variation of Plant Circadian Clock Function in Natural and Agricultural Settings. Journal of Biological Rhythms, 2017, 32, 26-34.	2.6	59
12	Population structure and local selection yield high genomic variation in <i>Mimulus guttatus</i> Molecular Ecology, 2017, 26, 519-535.	3.9	73
13	The genetic architecture of local adaptation and reproductive isolation in sympatry within the <i>Mimulus guttatus</i> species complex. Molecular Ecology, 2017, 26, 208-224.	3.9	75
14	Metagenome-Assembled Draft Genome Sequence of a Novel Microbial Stenotrophomonas maltophilia Strain Isolated from <i>Caenorhabditisremanei</i>	0.8	14
15	Disruption of endosperm development is a major cause of hybrid seed inviability between <i>Mimulus guttatus</i> and <i>Mimulus nudatus</i> New Phytologist, 2016, 210, 1107-1120.	7.3	79
16	A Segregating Inversion Generates Fitness Variation in Yellow Monkeyflower (<i>Mimulus) Tj ETQq0 0 0 rgBT /O</i>	verlogk 10) Tf 50 142 Td
17	Leaf shape evolution has a similar genetic architecture in three edaphic specialists within the <i>Mimulus guttatus </i> species complex. Annals of Botany, 2015, 116, 213-223.	2.9	32
18	The Standing Pool of Genomic Structural Variation in a Natural Population of Mimulus guttatus. Genome Biology and Evolution, 2014, 6, 53-64.	2.5	42

#	Article	IF	CITATIONS
19	Speciation on a local geographic scale: the evolution of a rare rock outcrop specialist in <i>>Mimulus</i> : Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20140001.	4.0	37
20	Major <scp>QTL</scp> s for critical photoperiod and vernalization underlie extensive variation in flowering in the <i><scp>M</scp>imulus guttatus</i> species complex. New Phytologist, 2013, 199, 571-583.	7.3	64
21	Mimulus sookensis (Phrymaceae), a new Allotetraploid Species Derived from Mimulus guttatus and Mimulus nasutus. Madroño, 2012, 59, 29-43.	0.4	11
22	Spatially and temporally varying selection on intrapopulation quantitative trait loci for a life history tradeâ€off in <i>Mimulus guttatus</i> i>. Molecular Ecology, 2012, 21, 3718-3728.	3.9	85
23	Genetic divergence causes parallel evolution of flower color in Chilean (i>Mimulus (i>. New Phytologist, 2009, 183, 729-739.	7.3	52
24	Contribution of chromosomal polymorphisms to the Gâ€matrix of <i>Mimulus guttatus </i> . New Phytologist, 2009, 183, 803-815.	7.3	37
25	Origin of Species in Overdrive. Science, 2009, 323, 350-351.	12.6	3
26	Pollen limitation and natural selection on floral characters in the yellow monkeyflower, <i>Mimulus guttatus</i> . New Phytologist, 2008, 177, 802-810.	7.3	132
27	Which evolutionary processes influence natural genetic variation for phenotypic traits?. Nature Reviews Genetics, 2007, 8, 845-856.	16.3	433
28	DELETERIOUS MUTATIONS AND GENETIC VARIATION FOR FLOWER SIZE IN MIMULUS GUTTATUS. Evolution; International Journal of Organic Evolution, 2007, 55, 937-942.	2.3	9
29	DIVERGENT SELECTION ON FLOWERING TIME CONTRIBUTES TO LOCAL ADAPTATION IN MIMULUS GUTTATUS POPULATIONS. Evolution; International Journal of Organic Evolution, 2006, 60, 2466-2477.	2.3	270
30	Pleiotropic Quantitative Trait Loci Contribute to Population Divergence in Traits Associated With Life-History Variation in Mimulus guttatus. Genetics, 2006, 172, 1829-1844.	2.9	147
31	MINOR QUANTITATIVE TRAIT LOCI UNDERLIE FLORAL TRAITS ASSOCIATED WITH MATING SYSTEM DIVERGENCE IN MIMULUS. Evolution; International Journal of Organic Evolution, 2002, 56, 2138-2155.	2.3	229
32	EVIDENCE FOR DOBZHANSKY-MULLER INCOMPATIBILITES CONTRIBUTING TO THE STERILITY OF HYBRIDS BETWEEN MIMULUS GUTTATUS AND M. NASUTUS. Evolution; International Journal of Organic Evolution, 2001, 55, 1932-1942.	2.3	120
33	A Genetic Map in the <i>Mimulus guttatus</i> Species Complex Reveals Transmission Ratio Distortion due to Heterospecific Interactions. Genetics, 2001, 159, 1701-1716.	2.9	316
34	The contribution of male-sterility mutations to inbreeding depression in Mimulus guttatus. Heredity, 1999, 83, 337-346.	2.6	39
35	The distribution of individual inbreeding coefficients and pairwise relatedness in a population of Mimulus guttatus. Heredity, 1999, 83, 625-632.	2.6	66
36	THE ROLE OF GENES OF LARGE EFFECT ON INBREEDING DEPRESSION IN <i>MIMULUS GUTTATUS</i> Evolution; International Journal of Organic Evolution, 1999, 53, 1678-1691.	2.3	130

#	Article	lF	CITATION
37	PERSPECTIVE: SPONTANEOUS DELETERIOUS MUTATION. Evolution; International Journal of Organic Evolution, 1999, 53, 645-663.	2.3	317
38	Inbreeding Load, Average Dominance and the Mutation Rate for Mildly Deleterious Alleles in Mimulus guttatus. Genetics, 1999, 153, 1885-1898.	2.9	88
39	Polymorphic microsatellite loci inMimulus guttatusand related species. Molecular Ecology, 1998, 7, 769-774.	3.9	74
40	MEASURES OF PHENOTYPIC SELECTION ARE BIASED BY PARTIAL INBREEDING. Evolution; International Journal of Organic Evolution, 1996, 50, 1501-1511.	2.3	73
41	Partial self-fertilization and inbreeding depression in two populations of Mimulus guttatus. Heredity, 1993, 71, 145-154.	2.6	125
42	INCREASED HERITABLE VARIATION FOLLOWING POPULATION BOTTLENECKS: THE ROLE OF DOMINANCE. Evolution; International Journal of Organic Evolution, 1993, 47, 949-957.	2.3	160
43	EFFECTS OF DIFFERENT LEVELS OF INBREEDING ON FITNESS COMPONENTS IN <i>MIMULUS GUTTATUS</i> Evolution; International Journal of Organic Evolution, 1993, 47, 864-876.	2.3	164
44	Genetic analysis of inbreeding depression caused by chlorophyll-deficient lethals in Mimulus guttatus. Heredity, 1992, 69, 562-572.	2.6	60