
Susan R Sandeman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1613267/publications.pdf Version: 2024-02-01

SUSAN P SANDEMAN

#	Article	IF	CITATIONS
1	Biomimetic bone-like composites as osteo-odonto-keratoprosthesis skirt substitutes. Journal of Biomaterials Applications, 2021, 35, 1043-1060.	2.4	7
2	Surface-Functionalized Conducting Nanofibers for Electrically Stimulated Neural Cell Function. Biomacromolecules, 2021, 22, 594-611.	5.4	12
3	Moderating cellular inflammation using 2-dimensional titanium carbide MXene and graphene variants. Biomaterials Science, 2021, 9, 1805-1815.	5.4	16
4	Bioengineering a cryogel-derived bioartificial liver using particle image velocimetry defined fluid dynamics. Materials Science and Engineering C, 2021, 123, 111983.	7.3	3
5	Factors Affecting Posterior Capsule Opacification in the Development of Intraocular Lens Materials. Pharmaceutics, 2021, 13, 860.	4.5	16
6	2D Titanium Carbide (Ti ₃ C ₂ T <i>_x</i>) in Accommodating Intraocular Lens Design. Advanced Functional Materials, 2020, 30, 2000841.	14.9	26
7	Multiple drug delivery from the drug-implants-laden silicone contact lens: Addressing the issue of burst drug release. Materials Science and Engineering C, 2020, 112, 110885.	7.3	60
8	Plackett-Burman design for screening of critical variables and their effects on the optical transparency and swelling of gatifloxacin-Pluronic-loaded contact lens. International Journal of Pharmaceutics, 2019, 566, 513-519.	5.2	38
9	MXene Sorbents for Removal of Urea from Dialysate: A Step toward the Wearable Artificial Kidney. ACS Nano, 2018, 12, 10518-10528.	14.6	174
10	Amine-Functionalized Electrically Conductive Core–Sheath MEH-PPV:PCL Electrospun Nanofibers for Enhanced Cell–Biomaterial Interactions. ACS Biomaterials Science and Engineering, 2018, 4, 3327-3346.	5.2	24
11	Bioinspired detoxification of blood: The efficient removal of anthrax toxin protective antigen using an extracorporeal macroporous adsorbent device. Scientific Reports, 2018, 8, 7518.	3.3	9
12	Rapid Adsorption of Proinflammatory Cytokines by Graphene Nanoplatelets and Their Composites for Extracorporeal Detoxification. Journal of Nanomaterials, 2018, 2018, 1-8.	2.7	12
13	Electrically conductive MEH-PPV:PCL electrospun nanofibres for electrical stimulation of rat PC12 pheochromocytoma cells. Biomaterials Science, 2018, 6, 2342-2359.	5.4	29
14	Nano carriers for drug transport across the blood–brain barrier. Journal of Drug Targeting, 2017, 25, 17-28.	4.4	187
15	A haemocompatible and scalable nanoporous adsorbent monolith synthesised using a novel lignin binder route to augment the adsorption of poorly removed uraemic toxins in haemodialysis. Biomedical Materials (Bristol), 2017, 12, 035001.	3.3	29
16	Reduced protein bound uraemic toxins in vegetarian kidney failure patients treated by haemodiafiltration. Hemodialysis International, 2016, 20, 610-617.	0.9	57
17	Biomineralised interpenetrating network hydrogels for bone tissue engineering. Bioinspired, Biomimetic and Nanobiomaterials, 2016, 5, 12-23.	0.9	13
18	Affinity binding of antibodies to supermacroporous cryogel adsorbents with immobilized protein A for removal of anthrax toxin protective antigen. Biomaterials, 2015, 50, 140-153.	11.4	64

#	Article	IF	CITATIONS
19	Synthesis of the polymerizable room temperature ionic liquid AMPS – TEA and superabsorbency for organic liquids of its copolymeric gels with acrylamide. Designed Monomers and Polymers, 2014, 17, 140-146.	1.6	9
20	An adsorbent monolith device to augment the removal of uraemic toxins during haemodialysis. Journal of Materials Science: Materials in Medicine, 2014, 25, 1589-1597.	3.6	28
21	Synthesis, Chloramphenicol Uptake, and In Vitro Release of Poly(AMPS–TEA-Co-AAm) Gels with Affinity for Both Water and Alcohols. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 73-79.	3.4	6
22	Examining porous bio-active glass as a potential osteo-odonto-keratoprosthetic skirt material. Journal of Materials Science: Materials in Medicine, 2013, 24, 1217-1227.	3.6	24
23	Nanoporous Activated Carbon Beads and Monolithic Columns as Effective Hemoadsorbents for Inflammatory Cytokines. International Journal of Artificial Organs, 2013, 36, 624-632.	1.4	13
24	Cytokine Removal: Hierarchical Porous Carbideâ€Derived Carbons for the Removal of Cytokines from Blood Plasma (Adv. Healthcare Mater. 6/2012). Advanced Healthcare Materials, 2012, 1, 682-682.	7.6	3
25	Composites with Macroporous Poly(vinyl alcohol) Cryogels with Attached Activated Carbon Microparticles with Controlled Accessibility of a Surface. ACS Applied Materials & Interfaces, 2012, 4, 5936-5944.	8.0	23
26	Hierarchical Porous Carbideâ€Derived Carbons for the Removal of Cytokines from Blood Plasma. Advanced Healthcare Materials, 2012, 1, 796-800.	7.6	33
27	Biomedical Applications of Carbon Adsorbents. , 2012, , 639-669.		12
28	Characterising Nanoporous Carbon Adsorbents for Biological Application to Chronic Kidney Disease. Journal of Biomaterials and Tissue Engineering, 2012, 2, 40-47.	0.1	5
29	Activation-Dependent Adsorption of Cytokines and Toxins Related to Liver Failure to Carbon Beads. Biomacromolecules, 2011, 12, 3733-3740.	5.4	26
30	Mesoporous carbide-derived carbon for cytokine removal from blood plasma. Biomaterials, 2010, 31, 4789-4794.	11.4	46
31	The in vitro corneal biocompatibility of hydroxyapatite coated carbon mesh. Biomaterials, 2009, 30, 3143-3149.	11.4	28
32	Inflammatory cytokine removal by an activated carbon device in a flowing system. Biomaterials, 2008, 29, 1638-1644.	11.4	34
33	The in vitro adsorption of cytokines by polymer-pyrolysed carbon. Biomaterials, 2006, 27, 5286-5291.	11.4	38
34	Mesoporous carbide-derived carbon with porosity tuned for efficient adsorption of cytokines. Biomaterials, 2006, 27, 5755-5762.	11.4	119
35	Assessing the in vitro biocompatibility of a novel carbon device for the treatment of sepsis. Biomaterials, 2005, 26, 7124-7131.	11.4	28
36	Human keratocyte migration into collagen gels declines with in vitro ageing. Mechanisms of Ageing and Development, 2000, 119, 149-157.	4.6	16

#	Article	IF	CITATIONS
37	A Standard Strain of Human Ocular Keratocytes. Ophthalmic Research, 1999, 31, 33-41.	1.9	12