Eusébio Reis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1613220/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Probabilistic landslide risk analysis considering direct costs in the area north of Lisbon (Portugal). Geomorphology, 2008, 94, 467-495.	1.1	136
2	Integration of spatial and temporal data for the definition of different landslide hazard scenarios in the area north of Lisbon (Portugal). Natural Hazards and Earth System Sciences, 2004, 4, 133-146.	1.5	99
3	Landslide risk analysis in the area North of Lisbon (Portugal): evaluation of direct and indirect costs resulting from a motorway disruption by slope movements. Landslides, 2007, 4, 123-136.	2.7	56
4	Effects of different land use and land cover data on the landslide susceptibility zonation of road networks. Natural Hazards and Earth System Sciences, 2019, 19, 471-487.	1.5	46
5	A flood susceptibility model at the national scale based on multicriteria analysis. Science of the Total Environment, 2019, 667, 325-337.	3.9	46
6	Floods in southern Portugal: their physical and human causes, impacts and human response. Mitigation and Adaptation Strategies for Global Change, 2002, 7, 267-284.	1.0	42
7	Understanding Driving Forces and Implications Associated with the Land Use and Land Cover Changes in Portugal. Sustainability, 2017, 9, 351.	1.6	42
8	A comprehensive approach to understanding flood risk drivers at the municipal level. Journal of Environmental Management, 2020, 260, 110127.	3.8	36
9	Continental Portuguese Territory Flood Susceptibility Index – contribution to a vulnerability index. Natural Hazards and Earth System Sciences, 2015, 15, 1907-1919.	1.5	34
10	Controlling factors of the size and location of large gully systems: A regression-based exploration using reconstructed pre-erosion topography. Catena, 2016, 147, 621-631.	2.2	25
11	Present habitat suitability for Anopheles atroparvus (Diptera, Culicidae) and its coincidence with former malaria areas in mainland Portugal. Geospatial Health, 2009, 3, 177.	0.3	21
12	Assessment of stream flood susceptibility: a crossâ€analysis between model results and flood losses. Journal of Flood Risk Management, 2018, 11, .	1.6	18
13	Reconstructing pre-erosion topography using spatial interpolation techniques: A validation-based approach. Journal of Chinese Geography, 2015, 25, 196-210.	1.5	17
14	Assessment of the recurrence interval of wildfires in mainland Portugal and the identification of affected LUC patterns. Journal of Maps, 2018, 14, 282-292.	1.0	14
15	Physical vulnerability assessment to flash floods using an indicatorâ€based methodology based on building properties and flow parameters. Journal of Flood Risk Management, 2021, 14, e12712.	1.6	14
16	MODELLING THE LAND USE AND LAND COVER CHANGES IN PORTUGAL: A MULTI-SCALE AND MULTI-TEMPORAL APPROACH. Finisterra, 2018, 53, .	0.3	14
17	The Effects of Land Use and Land Cover Geoinformation Raster Generalization in the Analysis of LUCC in Portugal. ISPRS International Journal of Geo-Information, 2018, 7, 390.	1.4	10
18	Theoretical constraints to gully erosion research: time for a reâ \in evaluation of concepts and assumptions? Farth Surface Processes and Landforms, 2011, 36, 1554-1557.	1.2	9

Eusébio Reis

#	Article	IF	CITATIONS
19	Remote Sensing Technologies for the Assessment of Marine and Coastal Ecosystems. Coastal Research Library, 2016, , 69-104.	0.2	6
20	Material damage caused by high-magnitude rainfall based on insurance data: Comparing two flooding events in the Lisbon Metropolitan Area and Madeira Island, Portugal. International Journal of Disaster Risk Reduction, 2020, 51, 101806.	1.8	6
21	Exploring spatial relationships between stream channel features, water depths and flow velocities during flash floods using HEC-GeoRAS and Geographic Information Systems. Journal of Chinese Geography, 2022, 32, 757-782.	1.5	5
22	Modeling the Probability of Surface Artificialization in Zêzere Watershed (Portugal) Using Environmental Data. Water (Switzerland), 2016, 8, 289.	1.2	4
23	Post-wildfires effects on physicochemical properties of surface water: the case study of Zêzere watershed (Portugal). Ribagua, 2019, 6, 34-48.	0.3	3
24	Exposure and physical vulnerability indicators to assess seismic risk in urban areas: a step towards a multi-hazard risk analysis. Geomatics, Natural Hazards and Risk, 2022, 13, 1154-1177.	2.0	3
25	Damaging flood risk in the Portuguese municipalities. , 2021, , 59-79.		0
26	Integração de dados espaciais em SIG para avaliação da susceptibilidade de ocorrência de deslizamentos. Finisterra, 2012, 38, .	0.3	0
27	Formas, processos e padrões na erosão por ravinamento: para um enquadramento teórico coerente. Finisterra, 2012, 46, .	0.3	0
28	MODELAÇÃO PREDITIVA DA VEGETAÇÃO NATURAL POTENCIAL DO CONCELHO DE LOURES Finisterra, 201 50, .	¹⁵ , _{0.3}	0