Anuska V Andjelkovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1612549/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cerebral Cavernous Malformation Pathogenesis: Investigating Lesion Formation and Progression with Animal Models. International Journal of Molecular Sciences, 2022, 23, 5000.	1.8	4
2	Systemic Delivery of an Adjuvant CXCR4–CXCL12 Signaling Inhibitor Encapsulated in Synthetic Protein Nanoparticles for Glioma Immunotherapy. ACS Nano, 2022, 16, 8729-8750.	7.3	43
3	Molecular Mechanisms of Cerebrovascular Diseases. International Journal of Molecular Sciences, 2022, 23, 7161.	1.8	1
4	Tight junctions in the blood–brain barrier promote edema formation and infarct size in stroke – Ambivalent effects of sealing proteins. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 132-145.	2.4	58
5	Early single-dose treatment with exosomes provides neuroprotection and improves blood-brain barrier integrity in swine model of traumatic brain injury and hemorrhagic shock. Journal of Trauma and Acute Care Surgery, 2020, 88, 207-218.	1.1	53
6	Modeling blood–brain barrier pathology in cerebrovascular disease in vitro: current and future paradigms. Fluids and Barriers of the CNS, 2020, 17, 44.	2.4	38
7	A novel approach to treatment of thromboembolic stroke in mice: Redirecting neutrophils toward a peripherally implanted CXCL1-soaked sponge. Experimental Neurology, 2020, 330, 113336.	2.0	16
8	Involvement of Epigenetic Mechanisms and Non-coding RNAs in Blood-Brain Barrier and Neurovascular Unit Injury and Recovery After Stroke. Frontiers in Neuroscience, 2019, 13, 864.	1.4	39
9	Endothelial Targets in Stroke. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2240-2247.	1.1	42
10	Decline in Sirtuin-1 expression and activity plays a critical role in blood-brain barrier permeability in aging. Neurobiology of Disease, 2019, 126, 105-116.	2.1	89
11	Claudin-1-Dependent Destabilization of the Blood–Brain Barrier in Chronic Stroke. Journal of Neuroscience, 2019, 39, 743-757.	1.7	86
12	Connexin 43 gap junctions contribute to brain endothelial barrier hyperpermeability in familial cerebral cavernous malformations type III by modulating tight junction structure. FASEB Journal, 2018, 32, 2615-2629.	0.2	49
13	Improvement of Blood-Brain Barrier Integrity in Traumatic Brain Injury and Hemorrhagic Shock Following Treatment With Valproic Acid and Fresh Frozen Plasma. Critical Care Medicine, 2018, 46, e59-e66.	0.4	40
14	Blood-brain barrier dysfunction and recovery after ischemic stroke. Progress in Neurobiology, 2018, 163-164, 144-171.	2.8	565
15	Expression of periaxin (PRX) specifically in the human cerebrovascular system: PDZ domain-mediated strengthening of endothelial barrier function. Scientific Reports, 2018, 8, 10042.	1.6	22
16	Brain endothelial cell junctions after cerebral hemorrhage: Changes, mechanisms and therapeutic targets. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1255-1275.	2.4	123
17	Is there a central role for the cerebral endothelium and the vasculature in the brain response to conditioning stimuli?. Conditioning Medicine, 2018, 1, 220-232.	1.3	5
18	Endocytosis of tight junction proteins and the regulation of degradation and recycling. Annals of the New York Academy of Sciences, 2017, 1397, 54-65.	1.8	73

ANUSKA V ANDJELKOVIC

#	Article	IF	CITATIONS
19	Cross-over endocytosis of claudins is mediated by interactions via their extracellular loops. PLoS ONE, 2017, 12, e0182106.	1.1	19
20	Structural Alterations to the Endothelial Tight Junction Complex During Stroke. Springer Series in Translational Stroke Research, 2016, , 3-23.	0.1	1
21	Junctional proteins of the blood-brain barrier: New insights into function and dysfunction. Tissue Barriers, 2016, 4, e1154641.	1.6	261
22	Organ distribution of histones after intravenous infusion of FITC histones or after sepsis. Immunologic Research, 2015, 61, 177-186.	1.3	36
23	PDCD10 (CCM3) regulates brain endothelial barrier integrity in cerebral cavernous malformation type 3: role of CCM3-ERK1/2-cortactin cross-talk. Acta Neuropathologica, 2015, 130, 731-750.	3.9	50
24	Mode of action of claudin peptidomimetics in the transient opening of cellular tight junction barriers. Biomaterials, 2015, 54, 9-20.	5.7	56
25	Treatment with a histone deacetylase inhibitor, valproic acid, is associated with increased platelet activation in a large animal model of traumatic brain injury and hemorrhagic shock. Journal of Surgical Research, 2014, 190, 312-318.	0.8	20
26	Inhibition of junctional adhesion molecule-A/LFA interaction attenuates leukocyte trafficking and inflammation in brain ischemia/reperfusion injury. Neurobiology of Disease, 2014, 67, 57-70.	2.1	72
27	Vascular disruption and blood–brain barrier dysfunction in intracerebral hemorrhage. Fluids and Barriers of the CNS, 2014, 11, 18.	2.4	174
28	Critical Role for the NLRP3 Inflammasome during Acute Lung Injury. Journal of Immunology, 2014, 192, 5974-5983.	0.4	255
29	Relocalization of Junctional Adhesion Molecule A during Inflammatory Stimulation of Brain Endothelial Cells. Molecular and Cellular Biology, 2012, 32, 3414-3427.	1.1	62
30	Autophagy in the brains of young patients with poorly controlled T1DM and fatal diabetic ketoacidosis. Experimental and Molecular Pathology, 2012, 93, 273-280.	0.9	38
31	Claudinâ€derived peptides are internalized via specific endocytosis pathways. Annals of the New York Academy of Sciences, 2012, 1257, 29-37.	1.8	20
32	Intact and injured endothelial cells differentially modulate postnatal murine forebrain neural stem cells. Neurobiology of Disease, 2010, 37, 218-227.	2.1	57
33	Insulin and IGF-1 receptors, nitrotyrosin and cerebral neuronal deficits in two young patients with diabetic ketoacidosis and fatal brain edema. Brain Research, 2010, 1343, 168-177.	1.1	20
34	Caveolae-mediated Internalization of Occludin and Claudin-5 during CCL2-induced Tight Junction Remodeling in Brain Endothelial Cells. Journal of Biological Chemistry, 2009, 284, 19053-19066.	1.6	158
35	Inflammatory mediators and blood brain barrier disruption in fatal brain edema of diabetic ketoacidosis. Brain Research, 2009, 1254, 138-148.	1.1	86
36	IL-12– and IL-23–modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. Journal of Experimental Medicine, 2008, 205, 1535-1541.	4.2	528

ANUSKA V ANDJELKOVIC

#	Article	IF	CITATIONS
37	Brain Endothelial Cell-Cell Junctions: How to "Open" the Blood Brain Barrier. Current Neuropharmacology, 2008, 6, 179-192.	1.4	433
38	ILâ€12 and ILâ€23 induce distinct types of EAE based on histological features and chemokine expression in the CNS. FASEB Journal, 2008, 22, 456-456.	0.2	0
39	Absence of the Chemokine Receptor CCR2 Protects Against Cerebral Ischemia/Reperfusion Injury in Mice. Stroke, 2007, 38, 1345-1353.	1.0	311
40	Effects of the Chemokine CCL2 on Blood–Brain Barrier Permeability during Ischemia–Reperfusion Injury. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 797-810.	2.4	205
41	Protein Kinase Cα-RhoA Cross-talk in CCL2-induced Alterations in Brain Endothelial Permeability. Journal of Biological Chemistry, 2006, 281, 8379-8388.	1.6	167
42	CCL2 Regulates Angiogenesis via Activation of Ets-1 Transcription Factor. Journal of Immunology, 2006, 177, 2651-2661.	0.4	170
43	Monocyte Chemoattractant Protein-1 Regulation of Blood–Brain Barrier Permeability. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 593-606.	2.4	335
44	The Protective Effects of Preconditioning on Cerebral Endothelial Cells in Vitro. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 1348-1355.	2.4	47
45	Potential role of MCP-1 in endothelial cell tight junction `opening': signaling via Rho and Rho kinase. Journal of Cell Science, 2003, 116, 4615-4628.	1.2	345
46	Functional expression of CCR2 by human fetal astrocytes. Journal of Neuroscience Research, 2002, 70, 219-231.	1.3	62
47	Characterization of Binding Sites for Chemokines MCP-1 and MIP-1α on Human Brain Microvessels. Journal of Neurochemistry, 2002, 75, 1898-1906.	2.1	63
48	The Chemokine Receptor CCR2 Mediates the Binding and Internalization of Monocyte Chemoattractant Protein-1 along Brain Microvessels. Journal of Neuroscience, 2001, 21, 9214-9223.	1.7	81
49	Visualization of Chemokine Binding Sites on Human Brain Microvessels. Journal of Cell Biology, 1999, 145, 403-412.	2.3	82
50	Central nervous system endothelium in neuroinflammatory, neuroinfectious, and neurodegenerative disease. , 1998, 51, 423-430.		32
51	Transcriptomic Profile of Blood–Brain Barrier Remodeling in Cerebral Amyloid Angiopathy. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	7